M.Sc(Engg) Thesis Defence
DEPARTMENT OF INSTRUMENTATION AND APPLIED PHYSICS
M.Sc(Engg) Thesis Defence
NAME OF THE CANDIDATE : Mr. Vineet Rojwal
DEGREE : M.Sc(Engg)
TITLE OF THE THESIS : Transition of Amorphous silicon into Microcrystalline
SUPERVISOR : Dr. T.K. Mondal.
DATE AND TIME : Friday, 24th January 2020 at 11.00 A.M
VENUE : Seminar Hall – 2, Dept. of Instrumentation and Applied Physics. ____________________________________________________________________________________
Abstract
This thesis investigates the connection between the plasma deposition conditions and microcrystalline silicon (µc-Si: H) material quality for optoelectronic thin film devices, especially for thin-film silicon photovoltaic and temperature sensing applications. The role of interfaces and the quality of µc-Si: H on the device performance are analysed in detail. The microcrystalline hydrogenated-silicon (also called polymorphous silicon) consisting a two-phase mixture of amorphous and structured silicon. µc-Si: H thin films are deposited using radio frequency (13.56 MHz) Plasma Enhanced ChemicalVapour Deposition (RF-PECVD) by varying the doping gases (diborane (B2H6) and phosphine (PH3)) flow, hydrogen-silane dilution ratio (R=H2/SiH4), film thickness and post annealing condition to optimize the recipes of µc-Si: H in terms of crystalline fraction and electrical conductivity. Micro-Raman spectroscopy is used to investigate these variations mentioned above, on the transition fraction regime from amorphous into micro-structured silicon. In this work, we present the characterization of thin films (both doped and undoped) deposited at the temperature of 250 0C on quartz substrate after annealed at 550 0C in N2-ambient, thus crystallinity percentage up to 90 % for p-type, 96% for n-type and 80 % for undoped films are achieved.
__________________________________________________________________________________________
ALL ARE WELCOME
CHAIRMAN
Date/Time
Date(s) - 24/01/2020
11:00 am
Seminar Hall, Dept. of Instrumentation and Applied Physics
Categories No Categories