PH 207 ABCD Matrix

A. Mohanty

Department of Instrumentation and Applied Physics
Indian Institute of Science
Bangalore 560012

February 15, 2024

Let $V=\left[\begin{array}{l}V_{1} \\ V_{2}\end{array}\right]$, and $I=\left[\begin{array}{l}I_{1} \\ I_{2}\end{array}\right]$.
Then $V=Z I$, and $I=Y V$.
$Z=\left[\begin{array}{ll}Z_{11} & Z_{12} \\ Z_{21} & Z_{22}\end{array}\right]$ is called the impedance matrix.
$Y=\left[\begin{array}{ll}Y_{11} & Y_{12} \\ Y_{21} & Y_{22}\end{array}\right]$ is called the admittance matrix.

Properties of Z and Y Matrices

Of course, $Y=Z^{-1}$, and $Z=Y^{-1}$.
Advantages of Z and Y :

- Provide a simple description.
- Can be generalized to n-port networks.

Disadvantages of Z and Y :

- Do not help for cascaded connection of two-port networks.
- Not easy to see how the load impedance gets transformed.

This is the most common way of combining two netwoks.

- Given Z_{K} and Z_{L}, how do we find Z of the cascaded network?
- Given Y_{K} and Y_{L}, how do we find Y of the cascaded network?
- No easy answer.

The transmission matrix, or the ABCD matrix description provides the simplest formula for a cascaded network.

$$
\left[\begin{array}{c}
V_{\text {in }} \\
I_{\text {in }}
\end{array}\right]=\left[\begin{array}{ll}
\mathcal{A} & \mathcal{B} \\
\mathcal{C} & \mathcal{D}
\end{array}\right]\left[\begin{array}{c}
V_{\text {out }} \\
I_{\text {out }}
\end{array}\right]
$$

Points to note:

- Input V and I are given in terms of output V and I .
- The output current flows out of the block.
- $T=\left[\begin{array}{ll}\mathcal{A} & \mathcal{B} \\ \mathcal{C} & \mathcal{D}\end{array}\right]$ is called the transmission matrix.

The ABCD Matrix of a Cascade Connection

$\left[\begin{array}{l}V_{\text {in }} \\ l_{\text {in }}\end{array}\right]=\left[\begin{array}{ll}\mathcal{A}_{K} & \mathcal{B}_{K} \\ \mathcal{C}_{K} & \mathcal{D}_{K}\end{array}\right]\left[\begin{array}{c}V_{\mathrm{m}} \\ I_{\mathrm{m}}\end{array}\right]=\left[\begin{array}{ll}\mathcal{A}_{K} & \mathcal{B}_{K} \\ \mathcal{C}_{K} & \mathcal{D}_{K}\end{array}\right]\left[\begin{array}{cc}\mathcal{A}_{L} & \mathcal{B}_{L} \\ \mathcal{C}_{L} & \mathcal{D}_{L}\end{array}\right]\left[\begin{array}{c}V_{\text {out }} \\ I_{\text {out }}\end{array}\right]$
So the ABCD matrix of the combined network is
$\left[\begin{array}{ll}\mathcal{A} & \mathcal{B} \\ \mathcal{C} & \mathcal{D}\end{array}\right]=\left[\begin{array}{cc}\mathcal{A}_{K} & \mathcal{B}_{K} \\ \mathcal{C}_{K} & \mathcal{D}_{K}\end{array}\right]\left[\begin{array}{ll}\mathcal{A}_{L} & \mathcal{B}_{L} \\ \mathcal{C}_{L} & \mathcal{D}_{L}\end{array}\right]$
which is nothing but the product of the ABCD matrices of the component networks from left to right.
This makes the ABCD matrix very useful in studying practical networks made by cascading simpler networks.

ABCD Matrix Elements

$$
\begin{aligned}
& V_{\text {in }}=\mathcal{A} V_{\text {out }}+\mathcal{B} I_{\text {out }} \\
& l_{\text {in }}=\mathcal{C} V_{\text {out }}+\mathcal{D} I_{\text {out }}
\end{aligned}
$$

Measurement definitions:
$\mathcal{A}=\left.\frac{V_{\text {in }}}{V_{\text {out }}}\right|_{l_{\text {out }}=0}$, and $\mathcal{B}=\left.\frac{V_{\text {in }}}{l_{\text {out }}}\right|_{V_{\text {out }}=0}$.
$\mathcal{C}=\left.\frac{l_{\text {in }}}{V_{\text {out }}}\right|_{l_{\text {out }}=0}$, and $\mathcal{D}=\left.\frac{l_{\text {in }}}{l_{\text {out }}}\right|_{V_{\text {out }}=0}$.
Dimensions: \mathcal{A} and \mathcal{D} are dimensionless. \mathcal{B} is an impedance. \mathcal{C} is an admittance.
Note that \mathcal{A} and \mathcal{C} are measured with the output open circuited, while \mathcal{B} and \mathcal{D} are measured with the output short circuited.
Note: The open circuit transfer function $T(s)=\frac{1}{\mathcal{A}}$.

Impedance Transformation

$Z_{\text {in }}=\frac{V_{\text {in }}}{l_{\text {in }}}=\frac{\mathcal{A} V_{\text {out }}+\mathcal{B} l_{\text {out }}}{\mathcal{C} V_{\text {out }}+\mathcal{D} l_{\text {out }}}=\frac{\mathcal{A} V_{\text {out }} / l_{\text {out }}+\mathcal{B}}{\mathcal{C} V_{\text {out }} / l_{\text {out }}+\mathcal{D}}=\frac{\mathcal{A} Z_{\text {load }}+\mathcal{B}}{\mathcal{C} Z_{\text {load }}+\mathcal{D}}$
since $V_{\text {out }} / I_{\text {out }}=Z_{\text {load }}$ ．
Möbius transformation or linear fractional transformation．
Where else do you see such transformations？

Series Element

Note：The element must be written as an impedance．
$V_{\text {in }}=V_{\text {out }}+Z I_{\text {out }}$
$l_{\text {in }}=I_{\text {out }}=0 V_{\text {out }}+I_{\text {out }}$
$\Rightarrow\left[\begin{array}{ll}\mathcal{A} & \mathcal{B} \\ \mathcal{C} & \mathcal{D}\end{array}\right]=\left[\begin{array}{ll}1 & Z \\ 0 & 1\end{array}\right]$
What is the determinant of this matrix？

Note: The element must be written as an admittance.
$V_{\text {in }}=V_{\text {out }}=V_{\text {out }}+0 I_{\text {out }}$
$l_{\text {in }}=Y V_{\text {out }}+I_{\text {out }}$
$\Rightarrow\left[\begin{array}{ll}\mathcal{A} & \mathcal{B} \\ \mathcal{C} & \mathcal{D}\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ Y & 1\end{array}\right]$
What is the determinant of this matrix?

A ladder network can be considered as a cascade of series and shunt elements．

The Voltage Divider

The ABCD matrix of this network is
$\left[\begin{array}{ll}\mathcal{A} & \mathcal{B} \\ \mathcal{C} & \mathcal{D}\end{array}\right]=\left[\begin{array}{cc}1 & R_{1} \\ 0 & 1\end{array}\right]\left[\begin{array}{cc}1 & 0 \\ 1 / R_{2} & 1\end{array}\right]=\left[\begin{array}{cc}1+R_{1} / R_{2} & R_{1} \\ 1 / R_{2} & 1\end{array}\right]$
Verify that $T(s)=\frac{1}{\mathcal{A}}=\frac{R_{2}}{R_{1}+R_{2}}$.
Note that for the shunt resistor, the entry in the matrix was for the \mathcal{C} element, and was converted to the admittance $1 / R_{2}$ first.

The RC Lowpass Filter

The ABCD matrix of this network is
$\left[\begin{array}{ll}\mathcal{A} & \mathcal{B} \\ \mathcal{C} & \mathcal{D}\end{array}\right]=\left[\begin{array}{cc}1 & R \\ 0 & 1\end{array}\right]\left[\begin{array}{cc}1 & 0 \\ s C & 1\end{array}\right]=\left[\begin{array}{cc}1+s R C & R \\ s C & 1\end{array}\right]$
Verify that $T(s)=\frac{1}{\mathcal{A}}=\frac{1}{1+s R C}=\frac{\frac{1}{R C}}{s+\frac{1}{R C}}=\frac{\omega_{0}}{s+\omega_{0}}$, where $\omega_{0}=\frac{1}{R C}$.

The CR Highpass Filter

The ABCD matrix of this network is
$\left[\begin{array}{ll}\mathcal{A} & \mathcal{B} \\ \mathcal{C} & \mathcal{D}\end{array}\right]=\left[\begin{array}{cc}1 & \frac{1}{S C} \\ 0 & 1\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ \frac{1}{R} & 1\end{array}\right]=\left[\begin{array}{cc}1+\frac{1}{2} & \frac{1}{S C} \\ \frac{1}{R} & 1\end{array}\right]$
Verify that $T(s)=\frac{1}{\mathcal{A}}=\frac{1}{1+\frac{1}{s R C}}=\frac{s}{s+\frac{1}{R C}}=\frac{s}{s+\omega_{0}}$, where $\omega_{0}=\frac{1}{R C}$.

A Bandpass Filter

The ABCD matrix of this network is
$\left[\begin{array}{ll}\mathcal{A} & \mathcal{B} \\ \mathcal{C} & \mathcal{D}\end{array}\right]=\left[\begin{array}{cc}1 & R_{1} \\ 0 & 1\end{array}\right]\left[\begin{array}{cc}1 & 0 \\ s C_{1} & 1\end{array}\right]\left[\begin{array}{cc}1 & \frac{1}{s C_{2}} \\ 0 & 1\end{array}\right]\left[\begin{array}{cc}1 & 0 \\ \frac{1}{R_{2}} & 1\end{array}\right]$
$=\left[\begin{array}{cc}1+s R_{1} C_{1} & R_{1} \\ s C_{1} & 1\end{array}\right]\left[\begin{array}{cc}1+\frac{1}{s R_{2} C_{2}} & \frac{1}{s C_{2}} \\ \frac{1}{R_{2}} & 1\end{array}\right]$
We only write down the \mathcal{A} element of the resulting matrix.
$\mathcal{A}=s R_{1} C_{1}+1+\frac{R_{1}}{R_{2}}+\frac{R_{1} C_{1}}{R_{2} C_{2}}+\frac{1}{s R_{2} C_{2}}$.
At what frequency is $T(s)=\frac{1}{\mathcal{A}}$ real?
Answer: $f_{0}=\frac{1}{2 \pi \sqrt{R_{1} R_{2} C_{1} C_{2}}}$
What is $T(s)$ at that frequency?
Answer: $1 /\left(1+\frac{R_{1}}{R_{2}}+\frac{R_{1} C_{1}}{R_{2} C_{2}}\right)$.

SPICE Code

File rccr.cir:
Bandpass RCCR Filter

VIN 10 AC 1
R1 1210 k
C1 2 0 10n
C2 $2310 n$
R2 3 0 10k
.AC LIN 100010 3k
. control
run
plot vm(3)
plot vp(3)
.endcontrol
. END

SPICE Results：Magnitude Plot
On Linux，you can type

ngspice rccr．cir

SPICE Results：Phase Plot

Available SPICE Software

- ngspice for Linux and OpenBSD (Recommended)
- LTspice for Windows

Making a Sinewave Oscillator

Let $R_{1}=R_{2}=R$, and $C_{1}=C_{2}=C$ in the circuit discussed.
Then $f_{0}=\frac{1}{2 \pi R C}$.
If $R=10 \mathrm{k} \Omega$, and $C=10 \mathrm{nF}, f_{0}=1.59155 \mathrm{kHz}$.
$T(s)$ at this frequency is $1 / 3$.
So if we make a voltage amplifier of gain +3 , we may be able to make a sinewave oscillator if we use this circuit in the feedback path.

Will either fail to oscillate or give clipped output．

Bad Circuit

Bad Output：Clipped output

IWATSU OSCILLOSCOPE

Circuit Diagram: With AGC

Can be made to work very well.
The success of Hewlett-Packard HP200A!
Note: HP200A uses a Wien bridge circuit which is slightly different.

Wien Bridge Circuit

Note：Not used in our circuit．

Good Circuit

Good Output: No clipping

The ABCD matrix ．．．
－．．．simplifies circuit analysis．
－．．．will often be used in this course．
(1) First order RC or RL circuits.
(2) Second order RLC circuits.
(3) Second order RC circuits. (To be discussed in the next class.)

RC LPF

$$
T(s)=\frac{\omega_{0}}{s+\omega_{0}}
$$

where, $\omega_{0}=\frac{1}{R C}$

CR HPF

$$
T(s)=\frac{s}{s+\omega_{0}}
$$

where, $\omega_{0}=\frac{1}{R C}$

$$
T(s)=\frac{\omega_{0}}{s+\omega_{0}}
$$

where, $\omega_{0}=\frac{R}{L}$

RL HPF

$$
T(s)=\frac{s}{s+\omega_{0}}
$$

where, $\omega_{0}=\frac{R}{L}$

$$
\begin{gathered}
T(s)=\frac{\omega_{0}}{s+\omega_{0}} \\
T(j \omega)=\frac{1}{1+j \omega / \omega_{0}} \\
|T(j \omega)|=\frac{1}{\sqrt{1+\left(\omega / \omega_{0}\right)^{2}}}
\end{gathered}
$$

So $\left|T\left(j \omega_{0}\right)\right|=1 / \sqrt{2}$.
For $|\omega| \gg \omega_{0},|T(j \omega)| \approx \omega_{0} /|\omega|$.

First Order LPF Pole-zero Diagram

$$
\mathrm{s}=\sigma+\mathrm{j} \omega \text { plane }
$$

First Order LPF TF Magnitude Plot

First Order LPF TF Phase Plot

$$
\begin{gathered}
T(s)=\frac{s}{s+\omega_{0}} \\
T(j \omega)=\frac{1}{1-j \omega_{0} / \omega} \\
|T(j \omega)|=\frac{1}{\sqrt{1+\left(\omega_{0} / \omega\right)^{2}}}
\end{gathered}
$$

So $\left|T\left(j \omega_{0}\right)\right|=1 / \sqrt{2}$.
For $|\omega| \ll \omega_{0},|T(j \omega)| \approx|\omega| / \omega_{0}$.

First Order HPF Pole-zero Diagram

$$
\mathrm{s}=\sigma+\mathrm{j} \omega \text { plane }
$$

First Order HPF TF Magnitude Plot

First Order HPF TF Phase Plot

The Series RLC Circuit

The Series RLC Bandpass Filter

$$
T(s)=\frac{R}{s L+R+\frac{1}{s C}}
$$

Simplify to get

$$
T(s)=\frac{\frac{R}{L} s}{s^{2}+\frac{R}{L} s+\frac{1}{L C}}
$$

Second-order Transfer Functions: LPF, BPF, and HPF

Now we recall the second-order transfer functions connected with the spring-mass-dashpot system.
LPF (Lowpass Filter):

$$
\begin{equation*}
T_{\mathrm{LPF}}(s)=\frac{\omega_{0}^{2}}{s^{2}+\frac{\omega_{0}}{Q} s+\omega_{0}^{2}} \tag{1}
\end{equation*}
$$

BPF (Bandpass Filter):

$$
\begin{equation*}
T_{\mathrm{BPF}}(s)=\frac{\frac{\omega_{0}}{Q} s}{s^{2}+\frac{\omega_{0}}{Q} s+\omega_{0}^{2}} \tag{2}
\end{equation*}
$$

HPF (Highpass Filter):

$$
\begin{equation*}
T_{\mathrm{HPF}}(s)=\frac{s^{2}}{s^{2}+\frac{\omega_{0}}{Q} s+\omega_{0}^{2}} \tag{3}
\end{equation*}
$$

When discussing a particular type of filter, the subscript of T may be omitted.

$$
T(s)=\frac{2 \alpha s}{s^{2}+2 \alpha s+\omega_{0}^{2}}
$$

For small loss, that is for small b, or for small $\alpha, T(s)$ has poles at $-\alpha \pm j \sqrt{\omega_{0}^{2}-\alpha^{2}}$. So α is the decay constant.
ω_{0} is the angular frequency of oscillations for no loss.

$$
\begin{gathered}
T(s)=\frac{2 \alpha s}{s^{2}+2 \alpha s+\omega_{0}^{2}} \\
T(j \omega)=\frac{j 2 \alpha \omega}{-\omega^{2}+j 2 \alpha \omega+\omega_{0}^{2}}=\frac{1}{1+\frac{\omega_{0}^{2}-\omega^{2}}{j 2 \alpha \omega}}=\frac{1}{1+j \frac{\omega^{2}-\omega_{0}^{2}}{2 \alpha \omega}}
\end{gathered}
$$

$$
T(j \omega)=\frac{1}{1+j \frac{\omega^{2}-\omega_{0}^{2}}{2 \alpha \omega}}
$$

When is $|T(j \omega)|=1$?
This happens when $\omega= \pm \omega_{0}$.
At other values of $\omega,|T(j \omega)|<1$.

$$
T(j \omega)=\frac{1}{1+j \frac{\omega^{2}-\omega_{0}^{2}}{2 \alpha \omega}}
$$

When is $|T(j \omega)|=\frac{1}{\sqrt{2}}$?
This happens when $\frac{\omega^{2}-\omega_{0}^{2}}{2 \alpha \omega}= \pm 1$.
Or, $\omega^{2}-\omega_{0}^{2}= \pm 2 \alpha \omega$.
The two quadratic equations are,
$\omega^{2}-2 \alpha \omega-\omega_{0}^{2}=0$,
and
$\omega^{2}+2 \alpha \omega-\omega_{0}^{2}=0$.
The positive root of the first quadratic equation is $\omega_{+}=\alpha+\sqrt{\alpha^{2}+\omega_{0}^{2}}$.
The positive root of the second quadratic equation is $\omega_{-}=-\alpha+\sqrt{\alpha^{2}+\omega_{0}^{2}}$.

Magnitude Plot of the BPF Transfer Function

Note that $\omega_{+} \omega_{-}=\omega_{0}^{2}$. Half-power angular bandwidth: $\Delta \omega=\omega_{+}-\omega_{-}=2 \alpha$. Quality factor

$$
Q=\frac{\omega_{0}}{\Delta \omega}=\frac{\omega_{0}}{2 \alpha}
$$

Q is a measure of the selectivity of the BPF．Note that this definition in the frequency domain is the original，exact definition of Q ．
Note that $2 \alpha=\Delta \omega=\frac{\omega_{0}}{Q}$ ．

$$
\begin{aligned}
& \omega_{+}=\left(\sqrt{1+\frac{1}{4 Q^{2}}}+\frac{1}{2 Q}\right) \omega_{0} \\
& \omega_{-}=\left(\sqrt{1+\frac{1}{4 Q^{2}}}-\frac{1}{2 Q}\right) \omega_{0}
\end{aligned}
$$

Remember that ω_{0} is the geometric mean of ω_{+}and ω_{-}． It is NOT the arithmetic mean of ω_{+}and ω_{-}．

Phase Plot of the BPF Transfer Function

Phase is easier to measure!

$$
T(s)=\frac{2 \alpha s}{s^{2}+2 \alpha s+\omega_{0}^{2}}
$$

Since $2 \alpha=\frac{\omega_{0}}{Q}$,

$$
T(s)=\frac{\frac{\omega_{0}}{Q} s}{s^{2}+\frac{\omega_{0}}{Q} s+\omega_{0}^{2}}
$$

This is the standard form of the transfer function of the BPF.
For the mass-spring-dashpot BPF system, $\omega_{0}=\sqrt{k / m}$, and $2 \alpha=b / m$. So,

$$
\begin{equation*}
Q=\frac{\omega_{0}}{2 \alpha}=\frac{\sqrt{k / m}}{b / m}=\frac{\sqrt{k m}}{b} . \tag{4}
\end{equation*}
$$

For other circuits or physical systems, these expressions will need to be determined in terms of the parameters of that system.

$$
T(s)=\frac{\frac{R}{L} s}{s^{2}+\frac{R}{L} s+\frac{1}{L C}}
$$

Write $\frac{1}{L C}=\omega_{0}^{2}$, and $\frac{R}{L}=2 \alpha$ to get

$$
T(s)=\frac{2 \alpha s}{s^{2}+2 \alpha s+\omega_{0}^{2}}
$$

For small loss, that is for small R, or for small $\alpha, T(s)$ has poles at $-\alpha \pm j \sqrt{\omega_{0}^{2}-\alpha^{2}}$.
So α is the decay constant.
ω_{0} is the angular frequency of oscillations for no loss.

$$
\begin{gathered}
T(s)=\frac{2 \alpha s}{s^{2}+2 \alpha s+\omega_{0}^{2}} \\
T(j \omega)=\frac{j 2 \alpha \omega}{-\omega^{2}+j 2 \alpha \omega+\omega_{0}^{2}}=\frac{1}{1+\frac{\omega_{0}^{2}-\omega^{2}}{j 2 \alpha \omega}}=\frac{1}{1+j \frac{\omega^{2}-\omega_{0}^{2}}{2 \alpha \omega}}
\end{gathered}
$$

$$
T(j \omega)=\frac{1}{1+j \frac{\omega^{2}-\omega_{0}^{2}}{2 \alpha \omega}}
$$

When is $|T(j \omega)|=1$?
This happens when $\omega= \pm \omega_{0}$.
At other values of $\omega,|T(j \omega)|<1$.

$$
T(j \omega)=\frac{1}{1+j \frac{\omega^{2}-\omega_{0}^{2}}{2 \alpha \omega}}
$$

When is $|T(j \omega)|=\frac{1}{\sqrt{2}}$?
This happens when $\frac{\omega^{2}-\omega_{0}^{2}}{2 \alpha \omega}= \pm 1$.
Or, $\omega^{2}-\omega_{0}^{2}= \pm 2 \alpha \omega$.
The two quadratic equations are,
$\omega^{2}-2 \alpha \omega-\omega_{0}^{2}=0$,
and
$\omega^{2}+2 \alpha \omega-\omega_{0}^{2}=0$.
The positive root of the first quadratic equation is $\omega_{+}=\alpha+\sqrt{\alpha^{2}+\omega_{0}^{2}}$.
The positive root of the second quadratic equation is $\omega_{-}=-\alpha+\sqrt{\alpha^{2}+\omega_{0}^{2}}$.

Magnitude Plot of the BPF Transfer Function

Note that $\omega_{+} \omega_{-}=\omega_{0}^{2}$. Half-power angular bandwidth: $\Delta \omega=\omega_{+}-\omega_{-}=2 \alpha$. Quality factor
Q is a measure of the selectivity of the BPF．Note that this definition in the frequency domain is the original，exact definition of Q ．
Note that $2 \alpha=\Delta \omega=\frac{\omega_{0}}{Q}$ ．

$$
\begin{aligned}
& \omega_{+}=\left(\sqrt{1+\frac{1}{4 Q^{2}}}+\frac{1}{2 Q}\right) \omega_{0} \\
& \omega_{-}=\left(\sqrt{1+\frac{1}{4 Q^{2}}}-\frac{1}{2 Q}\right) \omega_{0}
\end{aligned}
$$

Remember that ω_{0} is the geometric mean of ω_{+}and ω_{-}． It is NOT the arithmetic mean of ω_{+}and ω_{-}．

Phase Plot of the BPF Transfer Function

Phase is easier to measure!
$|T(j \omega)|$ for $Q=10$

$|T(j \omega)|$ for $Q=0.6$

$$
\begin{equation*}
T(j \omega)=\frac{2 \alpha j \omega}{2 \alpha j \omega+\omega_{0}^{2}-\omega^{2}}=\frac{j \omega \omega_{0} / Q}{j \omega \omega_{0} / Q+\omega_{0}^{2}-\omega^{2}}=\frac{1}{1+j Q\left(\frac{\omega}{\omega_{0}}-\frac{\omega_{0}}{\omega}\right)} . \tag{5}
\end{equation*}
$$

Phase angle is

$$
\begin{equation*}
\angle T(j \omega)=\arctan \left(Q\left(\frac{\omega_{0}}{\omega}-\frac{\omega}{\omega_{0}}\right)\right) . \tag{6}
\end{equation*}
$$

Special values:

- $/ T(j 0)=\pi / 2$.
- $\angle T\left(j \omega_{0}\right)=0$.
- $\angle T(j \infty)=-\pi / 2$.
- $\angle T\left(j \omega_{-}\right)=\pi / 4$.
- $/ T\left(j \omega_{+}\right)=-\pi / 4$.

Phase is important because it is often easier to measure.

BPF magnitude and phase on the same plot

BPF MAGNITUDE AND PHASE PLOTS FOR Q $=2.5$

$$
T(s)=\frac{2 \alpha s}{s^{2}+2 \alpha s+\omega_{0}^{2}}
$$

Since $2 \alpha=\frac{\omega_{0}}{Q}$,

$$
T(s)=\frac{\frac{\omega_{0}}{Q} s}{s^{2}+\frac{\omega_{0}}{Q} s+\omega_{0}^{2}}
$$

This is the standard form of the transfer function of the BPF. For the series RLC BPF,

$$
\omega_{0}=1 / \sqrt{L C},
$$

and

$$
Q=\frac{\omega_{0}}{2 \alpha}=\frac{\frac{1}{\sqrt{L C}}}{\frac{R}{L}}=\frac{\sqrt{L / C}}{R} .
$$

For other circuits or physical systems, these expressions will need to be determined in terms of the parameters of that system.

$$
T(s)=\frac{H \frac{\omega_{0}}{Q} s}{s^{2}+\frac{\omega_{0}}{Q} s+\omega_{0}^{2}}
$$

ω_{0} ：Centre angular frequency
Q：Quality factor
H ：Gain factor

Second Order BPF Pole－zero Diagram

Shown for $Q>\frac{1}{2}$ ．Has two poles and one zero．

Second Order BPF Pole Locations

Find zeros of $s^{2}+\frac{\omega_{0}}{Q} s+\omega_{0}^{2}$.
Case $Q>\frac{1}{2}$ (Underdamped)

$$
\begin{aligned}
& s_{1}=-\frac{\omega_{0}}{2 Q}+j \omega_{0} \sqrt{1-\frac{1}{4 Q^{2}}} \\
& s_{2}=-\frac{\omega_{0}}{2 Q}-j \omega_{0} \sqrt{1-\frac{1}{4 Q^{2}}}
\end{aligned}
$$

Complex conjugate pair of poles. $s_{1} s_{2}=\omega_{0}^{2}$.
Case $Q=\frac{1}{2}$ (Critically damped)

$$
s_{1}=s_{2}=-\omega_{0}
$$

Equal, negative real poles.

Case $Q<\frac{1}{2}$ (Overdamped)

$$
\begin{aligned}
& s_{1}=-\frac{\omega_{0}}{2 Q}+\omega_{0} \sqrt{\frac{1}{4 Q^{2}}-1} \\
& s_{2}=-\frac{\omega_{0}}{2 Q}-\omega_{0} \sqrt{\frac{1}{4 Q^{2}}-1}
\end{aligned}
$$

Unequal negative real poles. $s_{1} s_{2}=\omega_{0}^{2}$.

The Series RLC Lowpass Filter

$$
T(s)=\frac{\frac{1}{s C}}{s L+R+\frac{1}{s C}}
$$

Simplify to get

$$
T(s)=\frac{\frac{1}{L C}}{s^{2}+\frac{R}{L} s+\frac{1}{L C}}=\frac{\omega_{0}^{2}}{s^{2}+\frac{\omega_{0}}{Q} s+\omega_{0}^{2}}
$$

$$
T(j \omega)=\frac{\omega_{0}^{2}}{\omega_{0}^{2}-\omega^{2}+j \frac{\omega \omega_{0}}{Q}}
$$

At what frequency is $|T(j \omega)|$ maximum?
The numerator is constant. The square of the magnitude of the denominator is

$$
\begin{gathered}
\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+\frac{\omega^{2} \omega_{0}^{2}}{Q^{2}}=\omega_{0}^{4}+\omega^{4}-2 \omega_{0}^{2} \omega^{2}+\frac{\omega^{2} \omega_{0}^{2}}{Q^{2}} \\
=\omega_{0}^{4}+\omega^{4}-2 \omega_{0}^{2} \omega^{2}\left(1-\frac{1}{2 Q^{2}}\right)
\end{gathered}
$$

We will try to complete squares here. The result depends on the value of Q.

If $Q \leq 1 / \sqrt{2}$, all terms are non-negative and the denominator is an increasing function of ω.
In that case, $|T(j \omega)|$ has a maximum value of 1 at $\omega=0$. For any other $\omega,|T(j \omega)|$ is a monotonically decreasing function of $|\omega|$. We then say that there is no peaking.

If $Q>1 / \sqrt{2}$, we can complete the square to get the denominator magnitude squared as

$$
\left(\omega^{2}-\omega_{0}^{2}\left(1-\frac{1}{2 Q^{2}}\right)\right)^{2}+\omega_{0}^{4} \frac{1}{Q^{2}}\left(1-\frac{1}{4 Q^{2}}\right)
$$

So $|T(j \omega)|$ is maximum when

$$
\begin{gathered}
|\omega|=\omega_{L}=\omega_{0} \sqrt{1-\frac{1}{2 Q^{2}}} \\
\left|T\left(j \omega_{L}\right)\right|=\frac{Q}{\sqrt{1-\frac{1}{4 Q^{2}}}}
\end{gathered}
$$

This gives rise to peaking.

Case of Peaking

Case of No Peaking

$T(j \omega)$ Phase

Note that $T_{\text {HPF }}(j \omega) / T_{\mathrm{BPF}}(j \omega)=j Q \omega / \omega_{0}$, and $T_{\mathrm{LPF}}(j \omega) / T_{\mathrm{BPF}}(j \omega)=-j Q \omega_{0} / \omega$. So for positive ω, the HPF phase leads the BPF phase by $\pi / 2$, while the LPF phase lags the BPF phase by $\pi / 2$, as the plot shows.
In the same way, for the first-order case, HPF phase leads the LPF phase by $\pi / 2$.
Points to note:

- Unlike the magnitude plots, the phase plots are monotonic.
- HPF, BPF, and LPF phase plots are very simply related to one another.
- Phase is often easier to measure.

$$
T(s)=\frac{H \omega_{0}^{2}}{s^{2}+\frac{\omega_{0}}{Q} s+\omega_{0}^{2}}
$$

ω_{0} : Centre angular frequency
Q : Quality factor
H: Gain factor

Second Order LPF Pole-zero Diagram

Shown for $Q>\frac{1}{2}$. Has two poles and no zero.

The Series RLC Highpass Filter

$$
T(s)=\frac{s L}{s L+R+\frac{1}{s C}}
$$

Simplify to get

$$
T(s)=\frac{s^{2}}{s^{2}+\frac{R}{L} s+\frac{1}{L C}}=\frac{s^{2}}{s^{2}+\frac{\omega_{0}}{Q} s+\omega_{0}^{2}}
$$

If $Q>1 / \sqrt{2}$, show that $|T(j \omega)|$ is maximum when

$$
\begin{aligned}
& |\omega|=\omega_{H}=\frac{\omega_{0}}{\sqrt{1-\frac{1}{2 Q^{2}}}} . \\
& \left|T\left(j \omega_{H}\right)\right|=\frac{Q}{\sqrt{1-\frac{1}{4 Q^{2}}}} .
\end{aligned}
$$

Note that $\omega_{L} \omega_{H}=\omega_{0}^{2}$, even though ω_{H} and ω_{L} refer to different types of filters. If $Q \leq 1 / \sqrt{2}$, then there is no peaking.

$$
T(s)=\frac{H s^{2}}{s^{2}+\frac{\omega_{0}}{Q} s+\omega_{0}^{2}}
$$

ω_{0} : Centre angular frequency
Q: Quality factor
H : Gain factor

Second Order HPF Pole－zero Diagram

Shown for $Q>\frac{1}{2}$ ．Has two poles and two zeros．

Notation and Terminology

Note that even though the second order LPF and HPF are not really bandpass filters, we still use the notations ω_{0} and Q.
The meanings are different, even though the expressions are the same.

Broader Use of Q

Not all tuned systems are second order systems.
Still, the symbol Q is used in such systems.
One should be careful in such cases.

