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Impedance (Z) and Admittance (Y) Matrices

Let V =

[
V1
V2

]
, and I =

[
I1
I2

]
.

Then V = ZI, and I = YV .

Z =

[
Z11 Z12
Z21 Z22

]
is called the impedance matrix.

Y =

[
Y11 Y12
Y21 Y22

]
is called the admittance matrix.



Properties of Z and Y Matrices

Of course, Y = Z−1, and Z = Y−1.
Advantages of Z and Y :
• Provide a simple description.
• Can be generalized to n-port networks.

Disadvantages of Z and Y :
• Do not help for cascaded connection of two-port networks.
• Not easy to see how the load impedance gets transformed.



The Cascading of Two-port Networks

This is the most common way of combining two netwoks.

• Given ZK and ZL, how do we find Z of the cascaded network?
• Given YK and YL, how do we find Y of the cascaded network?
• No easy answer.

Another matrix, the transmission matrix, or the ABCD matrix description provides
the simplest way to work with a cascaded network.



The ABCD Matrix

[
Vin
Iin

]
=

[
A B
C D

] [
Vout
Iout

]
Points to note:
• Input V and I are given in terms of output V and I.
• The output current flows out of the block.

• T =

[
A B
C D

]
is called the transmission matrix.



The ABCD Matrix of a Cascade Connection

[
Vin
Iin

]
=

[
AK BK
CK DK

] [
Vm
Im

]
=

[
AK BK
CK DK

] [
AL BL
CL DL

] [
Vout
Iout

]
So the ABCD matrix of the combined network is[
A B
C D

]
=

[
AK BK
CK DK

] [
AL BL
CL DL

]
which is nothing but the product of the ABCD matrices of the component networks
from left to right.
This makes the ABCD matrix very useful in studying practical networks made by
cascading simpler networks.



ABCD Matrix Elements

Vin = AVout + BIout
Iin = CVout +DIout
Measurement definitions:
A = Vin

Vout

∣∣∣
Iout=0

, and B = Vin
Iout

∣∣∣
Vout=0

.

C = Iin
Vout

∣∣∣
Iout=0

, and D = Iin
Iout

∣∣∣
Vout=0

.

Dimensions: A and D are dimensionless. B is an impedance. C is an admittance.
Note that A and C are measured with the output open circuited, while B and D are
measured with the output short circuited.
Note: The open circuit transfer function T (s) = Vout

Vin

∣∣∣
Iout=0

= 1
A .



Impedance Transformation

Zin = Vin
Iin

= AVout+BIout
CVout+DIout

= AVout/Iout+B
CVout/Iout+D = AZload+B

CZload+D
since Vout/Iout = Zload.
Möbius transformation or linear fractional transformation.
Where else do you see such transformations?



Series Element

Note: The element must be written as an impedance.
Vin = Vout + ZIout
Iin = Iout = 0Vout + Iout

⇒
[
A B
C D

]
=

[
1 Z
0 1

]
What is the determinant of this matrix?



Shunt Element

Note: The element must be written as an admittance.
Vin = Vout = Vout + 0Iout
Iin = YVout + Iout

⇒
[
A B
C D

]
=

[
1 0
Y 1

]
What is the determinant of this matrix?



Ladder Network as a Cascade

A ladder network can be considered as a cascade of series and shunt elements.



The Voltage Divider

The ABCD matrix of this network is[
A B
C D

]
=

[
1 R1
0 1

] [
1 0

1/R2 1

]
=

[
1 + R1/R2 R1

1/R2 1

]
Verify that T (s) = 1

A = R2
R1+R2

.
Note that for the shunt resistor, the entry in the matrix was for the C element, and
was converted to the admittance 1/R2 first.



The RC Lowpass Filter

The ABCD matrix of this network is[
A B
C D

]
=

[
1 R
0 1

] [
1 0

sC 1

]
=

[
1 + sRC R

sC 1

]
Verify that T (s) = 1

A = 1
1+sRC =

1
RC

s+ 1
RC

= ω0
s+ω0

,

where ω0 = 1
RC .



The CR Highpass Filter

The ABCD matrix of this network is[
A B
C D

]
=

[
1 1

sC
0 1

] [
1 0
1
R 1

]
=

[
1 + 1

sRC
1

sC
1
R 1

]
Verify that T (s) = 1

A = 1
1+ 1

sRC
= s

s+ 1
RC

= s
s+ω0

,

where ω0 = 1
RC .



A Bandpass Filter

The ABCD matrix of this network is[
A B
C D

]
=

[
1 R1
0 1

] [
1 0

sC1 1

] [
1 1

sC2

0 1

] [
1 0
1

R2
1

]
=

[
1 + sR1C1 R1

sC1 1

] [
1 + 1

sR2C2

1
sC2

1
R2

1

]
We only write down the A element of the resulting matrix.
A = sR1C1 + 1 + R1

R2
+ R1C1

R2C2
+ 1

sR2C2
.

At what frequency is T (s) = 1
A real?

Answer: f0 = 1
2π
√

R1R2C1C2

What is T (s) at that frequency?
Answer: 1/(1 + R1

R2
+ R1C1

R2C2
).



SPICE Code
File rccr.cir:

Bandpass RCCR Filter

*****************************
VIN 1 0 AC 1
R1 1 2 10k
C1 2 0 10n
C2 2 3 10n
R2 3 0 10k
.AC LIN 1000 10 3k

.control
run
plot vm(3)
plot vp(3)
.endcontrol
.END



SPICE Results: Magnitude Plot
On Linux, you can type
ngspice rccr.cir



SPICE Results: Phase Plot



Available SPICE Software

• ngspice for Linux and OpenBSD (Recommended)
• LTspice for Windows



Making a Sinewave Oscillator

Let R1 = R2 = R, and C1 = C2 = C in the circuit discussed.
Then f0 = 1

2πRC .
If R = 10 kΩ, and C = 10 nF, f0 = 1.591 55 kHz.
T (s) at this frequency is 1/3.
So if we make a voltage amplifier of gain +3, we may be able to make a sinewave
oscillator if we use this circuit in the feedback path.



Circuit Diagram: No AGC

Will either fail to oscillate or give clipped output.



Bad Circuit



Bad Output: Clipped output



Circuit Diagram: With AGC

Can be made to work very well.
The success of Hewlett-Packard HP200A!
Note: HP200A uses a Wien bridge circuit which is slightly different.



Wien Bridge Circuit

Note: Not used in our circuit.



Good Circuit



Good Output: No clipping



Summary

The ABCD matrix . . .
• . . . simplifies circuit analysis.
• . . . will often be used in this course.



Filters

• Used for selecting some frequencies and rejecting others.
• Some common uses:

• Reducing noise
• Frequency division multiplexing
• Enhancing one harmonic of a periodic signal

• Our plan:
1 Study simple filters or building blocks
2 Combine these building blocks to make more complex filters



Example 1: RCCR BPF

Recall that
A = sR1C1 + 1 + R1

R2
+ R1C1

R2C2
+ 1

sR2C2
.

So

T (s) =
1
A

=

1
R1C1

s

s2 +
1+R1

R2
+

R1C1
R2C2

R1C1
s + 1

R1R2C1C2



Example 1: RCCR BPF T (s) in Standard Form

Comparing with the standard form we see that

ω0 =
1√

R1R2C1C2

Q =

√
R1C1
R2C2

1 + R1
R2

+ R1C1
R2C2

H =
1

1 + R1
R2

+ R1C1
R2C2



Example 1: Special Case

If R1 = R2 = R, and C1 = C2 = C, we have

ω0 =
1

RC

Q =
1
3

H =
1
3

Not very selective at all!



Example 2: RCRC LPF

Compute the ABCD matrix of the network to show that
A = s2R1R2C1C2 + (R1C1 + R1C2 + R2C2)s + 1.
So

T (s) =
1
A

=

1
R1R2C1C2

s2 + R1C1+R1C2+R2C2
R1R2C1C2

s + 1
R1R2C1C2



Example 2: RCRC LPF T (s) in Standard Form

Comparing with the standard form we see that

ω0 =
1√

R1R2C1C2

Q =

√
R1R2C1C2

R1C1 + R1C2 + R2C2

H = 1



Example 2: Special Case

If R1 = R2 = R, and C1 = C2 = C, we have

ω0 =
1

RC

Q =
1
3

H = 1



Example 3: BPF from the Parallel RLC Network

T (s) =
s

RC

s2 + s
RC + 1

LC

Comparing with the standard form we see that ω0 = 1√
LC

, Q = R√
L/C

, and H = 1.

Note that the expression for Q here differs from the expression that was derived
for the BPF based on the series RLC circuit.
Here Q is proportional to R, there it was inversely proportional to R.



Example 4: LPF from the Parallel RLC Network

T (s) =
1

LC

s2 + s
RC + 1

LC

Comparing with the standard form we see that ω0 = 1√
LC

, Q = R√
L/C

, and H = 1.

This circuit is used for impedance matching in industrial applications.



Example 5: HPF from the Parallel RLC Network

T (s) =
s2

s2 + s
RC + 1

LC

Comparing with the standard form we see that ω0 = 1√
LC

, Q = R√
L/C

, and H = 1.

This circuit is also used for impedance matching in industrial applications.



Why RC Filters?

• Inductors are practical at high frequencies.
• At audio frequencies, inductors tend to be bulkier and more expensive

compared to resistors and capacitors.
• So there is a desire to make audio frequency filters using resistors and

capacitors only.
• But, passive RC second order networks seem to have low Q.
• How can we get more Q?
• The answer is the active filter.
• Active filters use amplification to compensate for the losses.



Q-Enhancement using Positive Feedback

Consider a second order BPF whose transfer function is

T0(s) =
H0

ω00
Q0

s

s2 + ω00
Q0

s + ω2
00

The extra 0s in the subscripts are there to indicate original parameters.
Now let us use positive feedback as shown.

What is the new transfer function?



New Transfer Function

Vo = T0(s)(Vi + αVo)
Vo(1− αT0(s)) = T0(s)Vi

T (s) =
Vo

Vi
=

T0(s)

1− αT0(s)

Substitution of the expression for T0(s) and simplification gives us

T (s) =
H0

ω00
Q0

s

s2 + (1− αH0)ω00
Q0

s + ω2
00



New Parameters

Comparing with the standard form

T (s) =
H ω0

Q s
s2 + ω0

Q s + ω2
0

we see the following.
ω0 = ω00. Centre angular frequency does NOT change.

Q =
Q0

1− αH0

H =
H0

1− αH0

Both Q and H are enhanced by the factor 1
1−αH0

.
We need to be careful. If αH0 exceeds 1, the circuit will oscillate.



Q-Enhancement

The positive feedback scheme that was described can be implemented using two
operational amplifiers.
In practice, only one operational amplifier may be enough.
Not only second order BPF, even second order LPF and HPF circuits can have
their Q enhanced using amplifiers.


