IN 221 (AUG) 3:0 Sensors and Transducers Electromagnetic Sensors and Transducers Lecture 1

A. Mohanty

Department of Instrumentation and Applied Physics (IAP) Indian Institute of Science Bangalore 560012

August 23, 2024

Sensors and transducers

- Sensors and transducers which can be studied using concepts from *electromagnetics*.
- Sensors and transducers that use electric or magnetic fields.

Interfacing Electronics

- Analogue signal conditioning
- Pulse width modulation

David Halliday, Robert Resnick, and Jearl Walker

Fundamentals of Physics

Ian Sinclair

Sensors and Transducers

H. K. Tönshoff and I. Inasaki (Editors)

Sensors in Manufacturing

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Example Electromagnetic Sensors

- Microphone
- · Capacitive touch sensor
- LVDT
- Piezoelectric sensors
- Coil
- Resistance thermometer
- Hall sensor
- Strain gauge
- MEMS Sensors

- Loudspeakers
- Motors
- Solenoids and relays
- Piezoelectric actuators
- MEMS actuators
- Coil for producing magnetic field
- Electric heater

Sensors Based on Change in Resistance

- Strain Gauge
- Load Cell
- Platinum Resistance Thermometer
- Thermistor
- Light Dependent Resistor (LDR)
- Some types of MEMS accelerometers
- Some types of MEMS pressure sensors

- Proximity sensors using coils
- Some types of pressure sensors
- Linear Variable Differential Transformer (LVDT)

- MEMS accelerometers
- Pressure sensors
- Angle sensors
- Capacitor microphone

Usually there is no simple formula

Simple formula

Small air-core coil sensing a changing magnetic field.

- Coil area is known.
- Number of turns is known.

Note: Putting an iron core would make the sensor more sensitive, but now the calculations will be harder.

Whether the sensor or transducer output can be given by a formula or not, we always need to *calibrate* and characterize the device. Output vs. input measurements for ...

- ... a number of different input values,
- ... a number of different environmental conditions,
- ... a number of different device samples, ...

Miniaturization: Advantages and challenges

- Miniaturization: Making sensors smaller in size
- Simplification: Make the construction as simple as possible

Advantages

Miniaturization makes sensors:

- More precise in location
- Faster in response
- Cheaper
- More reliable
- More durable

Challenges

The output signal amplitude usually becomes smaller.

- Amplification
- Filtering
- Bridge or differential arrangement
- Modulation and synchronous or phase sensitive detection, also known as *lock-in amplifier*

Amplification and Filtering

Amplification

- DC vs. AC: AC amplifier is easier to build.
- Broadband vs. Tuned: Tuned amplifiers are less affected by noise.
- Chopper: Converts DC to AC.
- Single input vs. Differential input
- Can often be integrated with the sensor.

Filtering

- Removes unwanted noise.
- Even simple RC lowpass filter or LC bandpass filter can be quite effective.

- Two identical sensors as arms of a bridge circuit.
- Of course no two sensors are exactly identical.
- Bridge with nearly identical sensors is better than no bridge.
- Removes common mode signal.
- Examples: Strain gauge, LVDT

Metal Foil Strain Gauge Change in resistance is proportional to strain.

$$GF = \frac{\Delta R/R_{G}}{\epsilon}$$
(1)

 ΔR : Change in resistance caused by strain $R_{\rm G}$: Resistance of the strain gauge when there is no deformation ϵ : Strain = (Change in length) / (Length) For metallic foil gauges, GF is a little over 2.

Strain Gauge: Voltage Divider Arrangement

Disadvantages: Too much offset!

Let the battery voltage be 5 V, and both R and r be 100 ohms. The change in r may at most be 1 ohm. Then the change in output is 12.44 mV over a base value of 2.5 V. Very hard to use.

Not used.

Advantage: No offset output. With minor adjustment, one can make the output nearly proportional to the input. **Much used.**

One or more of the bridge arms can be a strain gauge.

Example Usage with a Beam:

 R_1 , or R_4 , or both can be mounted above the beam. R_2 , or R_3 , or both can be mounted below the beam.

If all resistors in this diagram are strain gauges, then the output will not be affected by a change in the temperature.

Wheatstone Bridge Output

$$V_o = V_B \left(\frac{R_2}{R_1 + R_2} - \frac{R_4}{R_3 + R_4} \right)$$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

(2)

$$V_o = V_B \frac{r}{R+r}$$

<ロ> < => < => < => < => < => < <</p>

Voltage Divider Analysis

$$V_o = V_B \frac{r}{R+r} \tag{3}$$

- The resistance *r* is a function of some physical input such as temperature or strain.
- The change in *r* is small and is usually proportional to the reference value of *r*.
- So it is the fractional change in *r* that is determined by the change in the physical quantity that is being sensed.
- Fractional change in common language: Percentage change or per unit change

Question: What value of R maximizes the change in the output for a given fractional change in r?

Rate of change of V_o with respect to r:

$$\frac{\partial V_o}{\partial r} = \frac{\partial \left(V_B \frac{r}{R+r} \right)}{\partial r} = V_B \frac{R}{(R+r)^2}$$
(4)

Rate of change of V_o with respect to fractional change in r:

$$\frac{\partial V_o}{\frac{1}{r}\partial r} = r\frac{\partial V_o}{\partial r} = V_B \frac{Rr}{(R+r)^2} = \frac{1}{4}V_B \left[1 - \frac{(R-r)^2}{(R+r)^2}\right]$$
(5)

This is maximized when R = r.

- So the best value of *R* is the nominal reference value of *r*.
- Note that even though the output is proportional to V_B , to keep the components safe, V_B cannot be made too high.
- Using higher values may cause heating of the strain gauge elements.

Example: Pressure Sensor MPS20N0040D

40 kPa differential pressure sensor

Pressure Sensor MPS20N0040D Diagram

Note: This is the *bottom* view of the sensor. Also, the resistor symbols are different to those of the Wheatstone bridge diagram we have shown earlier. We do NOT use this convention in our discussion.

Piezo-resistive pressure sensor arrangement

 $R_1 = R_2 = R_3 = R_4 = R_0.$ R_0 is approximately 5 k Ω in MPS20N0040D.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Piezo-resistive pressure sensor: Higher pressure

 R_1 and R_4 increase due to tension. R_2 and R_3 decrease due to compression.

Piezo-resistive pressure sensor: Lower pressure

 R_1 and R_4 decrease due to compression. R_2 and R_3 increase due to tension.

Pressure Sensor MPS20N0040D in use

- In many sensors, a change in the physical quantity to be measured is converted to a change of either capacitance or inductance.
- The capacitance or inductance is then made part of an AC bridge.
- The output is a small AC signal.

Accelerometer: Sensing the Displacement

Differential Capacitance Arrangement

- The proof mass acts as an electrode that moves between two other electrodes.
- It forms two capacitances that are equal when there is no displacement.
- The difference between the capacitances is proportional to the displacement, provided the displacement is small.

Challenge

- The devices are very small.
- The change in capacitance is very small.
- How do we reliably detect this small change?

Accelerometer: Interdigitated Structure

<□> <0<</p>

Q is the stored charge in the capacitor. Q = Cv.

$$C = \frac{Q}{v}$$

$$i = \frac{dQ}{dt} = \frac{d(Cv)}{dt} = C\frac{dv}{dt} + v\frac{dC}{dt}$$
If *C* is constant, $i = C\frac{dv}{dt}$.

<ロ> < => < => < => < => < => < <</p>

Let *C* be constant, and $v(t) = V_p \cos(2\pi ft) = V_p \cos(\omega t)$. Here V_p is the *peak value* of the applied sinusoidal voltage. *f* is the *frequency* of the source, and ω is its *angular frequency*. Then

$$i(t) = -2\pi f C V_{\rho} \sin(2\pi f t) = -\omega C V_{\rho} \sin(\omega t)$$
(6)

Peak value of the current is ωCV_{p} . It leads the voltage by a right angle.

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Parallel Plate Capacitor

Capacitance

$$C = \frac{\epsilon A}{d} = \frac{\kappa \epsilon_0 A}{d}$$
(7)

Electric constant: $\epsilon_0 = 8.85418782 \times 10^{-12} \, \mathrm{F \, m^{-1}}$

 κ : Dielectric constant of the medium separating the plates. κ is 1 for free space and air. This formula neglects fringing field effects.

Output Current is Proportional to ΔC

$$i = i_1 + i_2 = C_1 \frac{dV_s}{dt} + C_2 \frac{d(-V_s)}{dt} = (C_1 - C_2) \frac{dV_s}{dt} = \Delta C \frac{dV_s}{dt}$$
(8)

Note: The movable plate output is usually connected to a current to voltage converter.

The output is proportional to ΔC , which in turn is proportional to (i) the angle in case of the angle sensor, or (ii) the displacement of the proof mass in case of the MEMS accelerometer.

Circuit for Amplifier

The integrator is optional.

- A flexible electrode moves a small distance that is proportional to the acceleration or the pressure difference to be measured.
- This small movement changes a capacitance or an inductance.
- With a bridge arrangement, this sensor can be
 - ... sensitive,
 - ... reliable,
 - ... and quite linear.

<□> <0</p>

Physical quantity to be measured: *P* Output: (Signal) + (Noise) Signal: $kP \cos(\omega t + \phi)$

$$v_o = kP \cos(\omega t + \phi) + (Noise)$$

- The signal output may be quite small.
- It is still proportional to *P*.
- Here, ϕ is a constant phase shift that is specific to the bridge instrumentation.

- In industrial settings, the noise strength may be comparable to the signal. It may sometimes be greater.
- If we simply amplify the output, the noise will also be amplified.
- Filtering will decrease the noise, but that may not be enough.
- Cases like this are very common.

- Solution: Use a *lock-in amplifier*.
- Other names:
 - Synchronous detection
 - Phase-sensitive detection
- Implementation: Multiply the bridge output *v_o* with the reference sinewave and average (low-pass filter) it.
- What is the resulting output?

Product is $V \cos(\omega t) \times kP \cos(\omega t + \phi)$. Same as $kVP \cos(\phi) \cos^2(\omega t) - kVP \sin(\phi) \sin(\omega t) \cos(\omega t)$. Average of $\cos^2(\omega t)$ is $\frac{1}{2}$. Average of $\sin(\omega t) \cos(\omega t)$ is 0. So the average of the product is $\frac{1}{2}kVP \cos(\phi)$. The output is proportional to *P*.

Capacitance or inductance bridge

Many sensors owe their success to the use the following electronic subsystems.

< ロ ト < 回 ト < 三 ト < 三 ト < 三 の < で</p>

- Amplifier
- Filter
- Bridge or differential arrangement
- Lock-in amplifier

<□> <0<</p>

Example Differential Capacitive Sensor

- 20 MHz crystal oscillator output given to a divide by 2 counter.
- 1/4 of 74LS175 D flip-flop used to implement the divide by 2 counter.
- Q_0 output is $+V_s(t)$, \overline{Q}_0 output is $-V_s(t)$
- The two yellow wires sticking out are the fixed plates.
- The blue wire sticking out is the movable plate.
- The amplifier is a two-transistor tuned amplifier.
- MC1496 is used as the multiplier.
- Uses RC LPF.
- NE5532 is the final amplifier after the LPF.

Blue Wire Closer to the Left Yellow Wire

Blue Wire Equidistant from the Yellow Wires

Blue Wire Closer to the Right Yellow Wire

No class on Monday, 26 August 2024 Next class: Wednesday, 28 August 2024

Doubts and Questions

- Ask in class
- Write to amohanty@iisc.ac.in
- Inform any of the TAs