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Temperature Sensors

• Thermistor
• Thermocouple
• Resistance Thermometer
• Silicon Bandgap Temperature Sensor
• Infrared Temperature Sensor



Thermistor

• Resistor whose resistance changes with temperature.
• Usually made of semiconductors.
• Change of resistance is more than that in metal resistors.
• Usually nonlinear.
• Limited range of use: −90 °C to 130 °C
• Two types: NTC and PTC
• NTC: Negative Temperature Coefficient, resistance decreases with increase

in temperature
• PTC: Positive Temperature Coefficient, resistance increases with increase in

temperature
• NTC type is more commonly used.
• Can be quite sensitive, but not as accurate as other types of temperature

sensors.
• Also used to limit starting current.



Thermocouple

• Involves junctions of two different metals.
• Generates a small voltage that is roughly proportional to the temperature

difference of the two junctions.
• Based on Seebeck effect
• Many types available: Types K, J, N, R, S, B, T, E, and others.
• Advantage: Wide range (from −270 °C to 1700 °C)
• Advantage: Requires no external power
• Disadvantage: Output is quite small, usually requires amplification
• Disadvantage: Amplification can be challenging



Resistance Thermometer

Resistance Temperature Detector (RTD)
• The resistivity of metals is a linear function of temperature over a wide range

of temperatures.
• Usually a very pure form of the metal is used.
• A resistor made of the metal is enclosed in some form of protective housing.
• Commonly used metals: Platinum, Copper, Nickel
• Platinum can work till 600 °C.



Temperature Coefficient of Resistance (TCR)

Let the resistance of a resistor be Rref at temperature Tref and R at temperature T .
Then for metal resistors over a wide range of temperatures,

R = Rref[1 + α(T − Tref)] (1)

where α is called the temperature coefficient of resistance (TCR).
Tref is usually 20 °C.

α =
R − Rref

Rref(T − Tref)
=

∆R
Rref∆T

(2)

Units: per °C



TCR of Commonly Used Metals

Metal α

Platinum 3.925× 10−3 °C−1

Copper 3.9× 10−3 °C−1

Aluminium 3.9× 10−3 °C−1

Gold 3.4× 10−3 °C−1

Silver 3.8× 10−3 °C−1

Tungsten 4.5× 10−3 °C−1

Iron 5.0× 10−3 °C−1

Nickel 6.0× 10−3 °C−1

Tin 4.5× 10−3 °C−1

Lead 3.9× 10−3 °C−1



Two-wire Configuration

Disadvantage: r depends on the length of the connecting wire and only affects R2.



Three-wire Configuration

Advantage: r affects both R2 and R4 equally.



Silicon Bandgap Temperature Sensor

The difference in voltage drop across two identical diodes or base to emitter
junctions:

∆VBE =
kT
q

ln

(
IC1

IC2

)
(3)

Here IC1 and IC2 are the diode or the collector currents.
• Can be part of an integrated circuit
• Reasonably accurate
• Inexpensive
• Example: LM35 temperature sensor IC



PTAT Temperature Sensor

PTAT: Proportional to Absolute Temperature

∆VBE =
kT
q

ln

(
IC1

IC2

)
=

kT
q

ln n (4)



PTAT Circuit



PTAT Output



LM35 Output



Example PTAT Calculation

In the PTAT constructed, IC1
IC2

= n ≈ 10.
From the LM35 reading, T is 27.72 celsius or 27.72 + 273.15 kelvin.
Calculation:
n = 10.
T = 300.87 K.
Boltzmann constant: k = 1.380 649× 10−23 J K−1.
Elementary charge: q = 1.602 176 634× 10−19 C.
kT
q ln n = 59.699 mV which is close to the 58.3 mV reading.



Practice Problem: Wheatstone Bridge

Vo = VB

(
R2

R1 + R2
− R4

R3 + R4

)
(5)



Practice Problems

1 The electrodes of a parallel plate capacitor are circular discs, each having a radius of
10 cm. If the electrodes are separated by an air gap of 1 mm, calculate the
capacitance neglecting fringing fields.

2 A sine wave signal having peak voltage 20 V and frequency 10 MHz is applied across
a 1 nF capacitor. Calculate the peak current in the capacitor.

3 A circular coil has 10 turns of wire with radius 10 cm. Calculate the magnitude of B on
the axis of the coil at a distance 5 cm from the centre of the loop due to a 10 A current
in the coil. Assume that there are no magnetic materials near the coil.

4 A resistor constructed using platinum wire has resistance 100 Ω at 20 °C. What will
be its resistance at 10 °C?

5 In the Wheatstone bridge shown in the previous slide, VB = 10 V, R1 = R4 = 100 Ω,
and R2 = R3 = 96 Ω. Calculate V0.



Answers to Practice Problems

1 278.157 pF
2 1.256 64 A
3 44.9588 µT
4 96.075 Ω

5 −204.082 mV



Spring-Mass-Dashpot System: Modelling

x : Displacement of the mass from its equilibrium position

mẍ + bẋ + kx = F (6)

F : Force
v = ẋ : Velocity
Relationship between force and velocity:

mv̈ + bv̇ + kv = Ḟ (7)



Tension in the Dashpot

• Here the applied force F (t) is the input.
• We could consider the velocity v(t) as the output.
• A better choice is to consider the tension in the dashpot, Fd (t) = bv(t), as the

output.
• Fd (t) is the force endured by the dashpot.
• Having both input and output as forces makes the mathematics neater.

Relationship between F (t) and Fd (t):

mF̈d + bḞd + kFd = bḞ (8)



Transfer Function

The transfer function is

T (s) =
Fd (s)

F(s)
=

bs
ms2 + bs + k

=
(b/m)s

s2 + (b/m)s + k/m
(9)

Or,

T (s) =
2αs

s2 + 2αs + ω2
0
,

where,

ω0 =

√
k
m
,

and
b/m = 2α.



Terminology

ω0 is the angular frequency of oscillations in the absence of damping.
α is called the decay constant.
Both ω0 and α have dimensions of the inverse of time.
Alternate Notation: ωn for ω0, 2ζωn for 2α
See for example, Section 3.5 of Linear Control System Analysis and Design with
MATLAB by D’Azzo, Houpis and Sheldon.



Interpretation

An input of est produces an output of T (s)est in the steady state, that is after the
transients have died down.
In this case, the transients will decay to zero because both the roots of
s2 + 2αs + ω2

0 = 0 have negative real parts.



Sinusoidal Input

Let T (jω) = U + jV , so that T (−jω) = U − jV .
Input ejωt produces output T (jω)ejωt =
U cos(ωt)− V sin(ωt) + j [U sin(ωt) + V cos(ωt)].
Input e−jωt produces output T (−jω)e−jωt =
U cos(ωt)− V sin(ωt)− j [U sin(ωt) + V cos(ωt)].
Input cos(ωt) produces output U cos(ωt)− V sin(ωt), which is same as√

U2 + V 2
(

U√
U2 + V 2

cos(ωt)− V√
U2 + V 2

sin(ωt)
)

=
√

U2 + V 2 cos(ωt + Φ) = |T (jω)| cos(ωt + Φ)

where Φ = arctan(V/U), more correctly atan2(V,U), is the angle of T (jω).



Meaning of T (jω)

So for sinusoidal input, the output is also sinusoidal, the amplitude being multiplied
by |T (jω)|, the magnitude of T (jω), and the phase being shifted by the angle of
T (jω).



|T (jω)|

Here

|T (jω)| =

∣∣∣∣∣ 2αjω
2αjω + ω2

0 − ω2

∣∣∣∣∣ =
1√

1 +
(
ω2

0−ω2

2αω

)2
. (10)

Maximum Output: |T (jω)| = 1 when ω = ±ω0.
ω0 is called the centre angular frequency.



Sharpness of Response

Half-power Output: This happens when |T (jω)| = 1/
√

2.
Or,

ω2
0 − ω2

2αω
= ±1 (11)

The two quadratic equations to be solved are

ω2 − 2αω − ω2
0 = 0, (12)

and
ω2 + 2αω − ω2

0 = 0. (13)



Half-power Angular Frequencies

The positive root of Eq. 12, called the upper half-power angular frequency is

ω+ = α +
√
ω2

0 + α2 (14)

The positive root of Eq. 13, called the lower half-power angular frequency is

ω− = −α +
√
ω2

0 + α2 (15)

Note: The negative root of Eq. 12 is −ω−, and the negative root of Eq. 13 is −ω+.
∆ω = ω+ − ω− = 2α is called the half-power bandwidth.
Note that

ω+ω− = ω2
0. (16)



Quality Factor Q

Q =
ω0

∆ω
=
ω0

2α
(17)

is a measure of the selectivity or the sharpness of response. A higher Q makes
the response more selective.
So

2α =
ω0

Q
. (18)

In view of this,

T (s) =
ω0s
Q

s2 + ω0s
Q + ω2

0
.

Whenever we see a quadratic denominator, we use the Q notation, even if the
system is not a bandpass system.



Half-power Angular Frequencies Shown for Q = 1.5



ω+ and ω− in terms of ω0 and Q

ω+ = ω0

(√
1 +

1
4Q2 +

1
2Q

)
. (19)

ω− = ω0

(√
1 +

1
4Q2 −

1
2Q

)
. (20)

Also, remember that ω+ω− = ω2
0, and ω+ − ω− = ω0/Q.

Note that,
ω+

ω0
− ω0

ω+
=

1
Q
, (21)

and
ω−
ω0
− ω0

ω−
= − 1

Q
. (22)



|T (jω)| for Q = 10



|T (jω)| for Q = 0.6



BPF Phase

T (jω) =
2αjω

2αjω + ω2
0 − ω2

=
jωω0/Q

jωω0/Q + ω2
0 − ω2

=
1

1 + jQ
(
ω
ω0
− ω0

ω

) . (23)

Phase angle is

T (jω) = arctan

(
Q
(
ω0

ω
− ω

ω0

))
. (24)

Special values:
• T (j0) = π/2.
• T (jω0) = 0.
• T (j∞) = −π/2.
• T (jω−) = π/4.
• T (jω+) = −π/4.

Phase is important because it is often easier to measure.



BPF magnitude and phase on the same plot



Second-order BPF: More general form

We studied a transfer function of the form

T (s) =
ω0s
Q

s2 + ω0s
Q + ω2

0

that occurs in many applications.
The meanings of the Q and ω0 parameters were understood.
A slightly more general form for the second-order BPF transfer function is

T (s) =
H ω0s

Q

s2 + ω0s
Q + ω2

0
.

Here H is constant gain or loss factor, useful in systems with amplification or extra
losses.



LPF System

Example: MEMS Accelerometer
Input is applied force, output can be the displacement x .
Or, to simplify the mathematics, let the force in the spring, kx , be the output. Then

T (s) =
ω2

0

s2 + ω0s
Q + ω2

0
. (25)

Even here, the symbol Q is used.

LPF |T (jω)| shown for Q = 1.1.



HPF System

Example: MEMS Accelerometer
Input is applied force, output can be the acceleration ẍ .
Or, to simplify the mathematics, let the force acting on the mass, mẍ , be the
output. Then

T (s) =
s2

s2 + ω0s
Q + ω2

0
. (26)

The same symbol Q is used.

LPF |T (jω)| shown for Q = 1.1.


