IN 221 (AUG) 3:0 Sensors and Transducers Electromagnetic Sensors and Transducers Lecture 5

A. Mohanty

Department of Instrumentation and Applied Physics (IAP) Indian Institute of Science

Bangalore 560012
September 1, 2023

Output proportional to T
PTAT Circuit

$$
\begin{equation*}
\Delta V_{\mathrm{BE}}=\frac{k T}{q} \ln \left(\frac{l_{\mathrm{C} 1}}{l_{\mathrm{C} 2}}\right) \tag{1}
\end{equation*}
$$

PTAT Circuit

PTAT Output

LM35 Output

Spring-Mass-Dashpot System: Modelling

x : Displacement of the mass from its equilibrium position

$$
\begin{equation*}
m \ddot{x}+b \dot{x}+k x=F \tag{2}
\end{equation*}
$$

F : Force
$v=\dot{x}$: Velocity
Relationship between force and velocity:

$$
\begin{equation*}
m \ddot{v}+b \dot{v}+k v=\dot{F} \tag{3}
\end{equation*}
$$

- Here the applied force $F(t)$ is the input.
- We could consider the velocity $v(t)$ as the output.
- A better choice is to consider the tension in the dashpot, $F_{d}(t)=b v(t)$, as the output.
- $F_{d}(t)$ is the force endured by the dashpot.
- Having both input and output as forces makes the mathematics neater. Relationship between $F(t)$ and $F_{d}(t)$:

$$
\begin{equation*}
m \ddot{F}_{d}+b \dot{F}_{d}+k F_{d}=b \dot{F} \tag{4}
\end{equation*}
$$

Transfer Function

The transfer function is

$$
\begin{equation*}
T(s)=\frac{\mathcal{F}_{d}(s)}{\mathcal{F}(s)}=\frac{b s}{m s^{2}+b s+k}=\frac{(b / m) s}{s^{2}+(b / m) s+k / m} \tag{5}
\end{equation*}
$$

Or,

$$
T(s)=\frac{2 \alpha s}{s^{2}+2 \alpha s+\omega_{0}^{2}},
$$

where,

$$
\omega_{0}=\sqrt{\frac{k}{m}}
$$

and

$$
b / m=2 \alpha
$$

Terminology

ω_{0} is the angular frequency of oscillations in the absence of damping.
α is called the decay constant.
Both ω_{0} and α have dimensions of the inverse of time.
Alternate Notation: ω_{n} for $\omega_{0}, 2 \zeta \omega_{n}$ for 2α
See for example, Section 3.5 of Linear Control System Analysis and Design with MATLAB by D'Azzo, Houpis and Sheldon.

Interpretation

An input of $e^{s t}$ produces an output of $T(s) e^{s t}$ in the steady state, that is after the transients have died down.
In this case, the transients will decay to zero because both the roots of $s^{2}+2 \alpha s+\omega_{0}^{2}=0$ have negative real parts.

Let $T(j \omega)=U+j V$, so that $T(-j \omega)=U-j V$.
Input $e^{j \omega t}$ produces output $T(j \omega) e^{j \omega t}=$
$U \cos (\omega t)-V \sin (\omega t)+j[U \sin (\omega t)+V \cos (\omega t)]$.
Input $e^{-j \omega t}$ produces output $T(-j \omega) e^{-j \omega t}=$
$U \cos (\omega t)-V \sin (\omega t)-j[U \sin (\omega t)+V \cos (\omega t)]$.
Input $\cos (\omega t)$ produces output $U \cos (\omega t)-V \sin (\omega t)$, which is same as

$$
\begin{gathered}
\sqrt{U^{2}+V^{2}}\left(\frac{U}{\sqrt{U^{2}+V^{2}}} \cos (\omega t)-\frac{V}{\sqrt{U^{2}+V^{2}}} \sin (\omega t)\right) \\
=\sqrt{U^{2}+V^{2}} \cos (\omega t+\Phi)=|T(j \omega)| \cos (\omega t+\Phi)
\end{gathered}
$$

where $\Phi=\arctan (V / U)$, more correctly atan2(V, U), is the angle of $T(j \omega)$.

Meaning of $T(j \omega)$

So for sinusoidal input, the output is also sinusoidal, the amplitude being multiplied by $|T(j \omega)|$, the magnitude of $T(j \omega)$, and the phase being shifted by the angle of $T(j \omega)$.

Here

$$
\begin{equation*}
|T(j \omega)|=\left|\frac{2 \alpha j \omega}{2 \alpha j \omega+\omega_{0}^{2}-\omega^{2}}\right|=\frac{1}{\sqrt{1+\left(\frac{\omega_{0}^{2}-\omega^{2}}{2 \alpha \omega}\right)^{2}}} \tag{6}
\end{equation*}
$$

Maximum Output：$|T(j \omega)|=1$ when $\omega= \pm \omega_{0}$ ． ω_{0} is called the centre angular frequency．

Half-power Output: This happens when $|T(j \omega)|=1 / \sqrt{2}$. Or,

$$
\begin{equation*}
\frac{\omega_{0}^{2}-\omega^{2}}{2 \alpha \omega}= \pm 1 \tag{7}
\end{equation*}
$$

The two quadratic equations to be solved are

$$
\begin{equation*}
\omega^{2}-2 \alpha \omega-\omega_{0}^{2}=0 \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\omega^{2}+2 \alpha \omega-\omega_{0}^{2}=0 \tag{9}
\end{equation*}
$$

Half-power Angular Frequencies

The positive root of Eq. 8, called the upper half-power angular frequency is

$$
\begin{equation*}
\omega_{+}=\alpha+\sqrt{\omega_{0}^{2}+\alpha^{2}} \tag{1}
\end{equation*}
$$

The positive root of Eq. 9, called the lower half-power angular frequency is

$$
\begin{equation*}
\omega_{-}=-\alpha+\sqrt{\omega_{0}^{2}+\alpha^{2}} \tag{11}
\end{equation*}
$$

Note: The negative root of Eq. 8 is $-\omega_{-}$, and the negative root of Eq. 9 is $-\omega_{+}$. $\Delta \omega=\omega_{+}-\omega_{-}=2 \alpha$ is called the half-power bandwidth.
Note that

$$
\begin{equation*}
\omega_{+} \omega_{-}=\omega_{0}^{2} . \tag{12}
\end{equation*}
$$

$$
\begin{equation*}
Q=\frac{\omega_{0}}{\Delta \omega}=\frac{\omega_{0}}{2 \alpha} \tag{13}
\end{equation*}
$$

is a measure of the selectivity or the sharpness of response. A higher Q makes the response more selective.
So

$$
\begin{equation*}
2 \alpha=\frac{\omega_{0}}{Q} . \tag{14}
\end{equation*}
$$

In view of this,

$$
T(s)=\frac{\frac{\omega_{0} s}{Q}}{s^{2}+\frac{\omega_{0} s}{Q}+\omega_{0}^{2}} .
$$

Whenever we see a quadratic denominator, we use the Q notation, even if the system is not a bandpass system.

Half－power Angular Frequencies Shown for $Q=1.5$

$$
\begin{align*}
& \omega_{+}=\omega_{0}\left(\sqrt{1+\frac{1}{4 Q^{2}}}+\frac{1}{2 Q}\right) . \tag{15}\\
& \omega_{-}=\omega_{0}\left(\sqrt{1+\frac{1}{4 Q^{2}}}-\frac{1}{2 Q}\right) . \tag{16}
\end{align*}
$$

Also, remember that $\omega_{+} \omega_{-}=\omega_{0}^{2}$, and $\omega_{+}-\omega_{-}=\omega_{0} / Q$.
Note that,

$$
\begin{equation*}
\frac{\omega_{+}}{\omega_{0}}-\frac{\omega_{0}}{\omega_{+}}=\frac{1}{Q}, \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\omega_{-}}{\omega_{0}}-\frac{\omega_{0}}{\omega_{-}}=-\frac{1}{Q} . \tag{18}
\end{equation*}
$$

$|T(j \omega)|$ for $Q=10$

$|T(j \omega)|$ for $Q=0.6$

$$
\begin{equation*}
T(j \omega)=\frac{2 \alpha j \omega}{2 \alpha j \omega+\omega_{0}^{2}-\omega^{2}}=\frac{j \omega \omega_{0} / Q}{j \omega \omega_{0} / Q+\omega_{0}^{2}-\omega^{2}}=\frac{1}{1+j Q\left(\frac{\omega}{\omega_{0}}-\frac{\omega_{0}}{\omega}\right)} . \tag{19}
\end{equation*}
$$

Phase angle is

$$
\begin{equation*}
\angle T(j \omega)=\arctan \left(Q\left(\frac{\omega_{0}}{\omega}-\frac{\omega}{\omega_{0}}\right)\right) . \tag{20}
\end{equation*}
$$

Special values:

- $/ T(j 0)=\pi / 2$.
- $\angle T\left(j \omega_{0}\right)=0$.
- $\angle T(j \infty)=-\pi / 2$.
- $\angle T\left(j \omega_{-}\right)=\pi / 4$.
- $/ T\left(j \omega_{+}\right)=-\pi / 4$.

Phase is important because it is often easier to measure.

BPF magnitude and phase on the same plot

BPF MAGNITUDE AND PHASE PLOTS FOR Q $=2.5$

Example: MEMS Accelerometer

Input is applied force, output can be the displacement x.
Or, to simplify the mathematics, let the force in the spring, $k x$, be the output. Then

$$
\begin{equation*}
T(s)=\frac{\omega_{0}^{2}}{s^{2}+\frac{\omega_{0} s}{Q}+\omega_{0}^{2}} \tag{21}
\end{equation*}
$$

Even here, the symbol Q is used.

LPF $|T(j \omega)|$ shown for $Q=1.1$.

HPF System

Example: MEMS Accelerometer

Input is applied force, output can be the acceleration \ddot{x}.
Or, to simplify the mathematics, let the force acting on the mass, $m \ddot{x}$, be the output. Then

$$
\begin{equation*}
T(s)=\frac{s^{2}}{s^{2}+\frac{\omega_{0} s}{Q}+\omega_{0}^{2}} \tag{22}
\end{equation*}
$$

The same symbol Q is used.

HPF $|T(j \omega)|$ shown for $Q=1.1$.

$$
T(j \omega)=\frac{\omega_{0}^{2}}{\omega_{0}^{2}-\omega^{2}+j \frac{\omega \omega_{0}}{Q}}
$$

At what frequency is $|T(j \omega)|$ maximum?
The numerator is constant. The square of the magnitude of the denominator is

$$
\begin{gathered}
\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+\frac{\omega^{2} \omega_{0}^{2}}{Q^{2}}=\omega_{0}^{4}+\omega^{4}-2 \omega_{0}^{2} \omega^{2}+\frac{\omega^{2} \omega_{0}^{2}}{Q^{2}} \\
=\omega_{0}^{4}+\omega^{4}-2 \omega_{0}^{2} \omega^{2}\left(1-\frac{1}{2 Q^{2}}\right)
\end{gathered}
$$

We will try to complete squares here. The result depends on the value of Q.

If $Q \leq 1 / \sqrt{2}$, all terms are non-negative and the denominator is an increasing function of ω.
In that case, $|T(j \omega)|$ has a maximum value of 1 at $\omega=0$. For any other $\omega,|T(j \omega)|$ is a monotonically decreasing function of $|\omega|$. We then say that there is no peaking.

If $Q>1 / \sqrt{2}$, we can complete the square to get the denominator magnitude squared as

$$
\left(\omega^{2}-\omega_{0}^{2}\left(1-\frac{1}{2 Q^{2}}\right)\right)^{2}+\omega_{0}^{4} \frac{1}{Q^{2}}\left(1-\frac{1}{4 Q^{2}}\right)
$$

So $|T(j \omega)|$ is maximum when

$$
\begin{gather*}
|\omega|=\omega_{L}=\omega_{0} \sqrt{1-\frac{1}{2 Q^{2}}} . \tag{2}\\
\left|T\left(j \omega_{L}\right)\right|=\frac{Q}{\sqrt{1-\frac{1}{4 Q^{2}}}} . \tag{24}
\end{gather*}
$$

This gives rise to peaking.
Also, note that $\left|T\left(j \omega_{0}\right)\right|=Q$, for the LPF.

Case of Peaking

Case of No Peaking

- Vacuum System: Uses pumps to remove air from a chamber.
- Very low pressures are needed.
- Some experiments cannot be done unless the pressure is lower than a specified value.
- Sensors which indicate the pressure accurately are needed.
- Pascal (Pa): 1 newton per square metre (SI Unit)
- $1 \mathrm{bar}=10^{5} \mathrm{~Pa}=100 \mathrm{kPa}$
- Technical Atmosphere: 1 at $=1 \mathrm{kgf}$ per centimetre squared $=98066.5 \mathrm{~Pa}$
- Standard Atmosphere: $101325 \mathrm{~Pa}=760$ Torr
- 1 Torr $=133.3224 \mathrm{~Pa}$ (approximately 1 mmHg) (named after Torricelli)
- 1 pound force per square inch $=1 \mathrm{lbf} /(\mathrm{in})^{2}=6894.757 \mathrm{~Pa}$

Low Pressure Sensors

Low pressure: Pressure less than 1 mbar
Low pressure sensors are called pressure gauges.
Three Important Low Pressure Gauges:

Type	Working Principle	Range
Pirani Gauge	Heat Convection	0.5 Torr to 10^{-4} Torr
Penning Gauge	Ionization: Cold cathode	$10^{-2} \mathrm{mbar}$ to $10^{-7} \mathrm{mbar}$
Bayard-Alpert Gauge	Ionization: Hot cathode	$10^{-3} \mathrm{mbar}$ to $10^{-10} \mathrm{mbar}$

Thermal Convection: Lower pressure \Rightarrow Less heat carried away \Rightarrow More heating of resistor \Rightarrow Higher resistance Pirani gauge

Pirani Gauge

Penning Gauge

Cold cathode: Requires 2 to 4 kV
Starting problem at very low pressures.
Magnetic field often used for longer travel paths of electrons.

Bayard－Alpert Gauge

Avoids x－ray ionization problem of the triode gauge Hot cathode：Can measure very low pressures

Example potentials at the electrodes：
－Filament at +45 V
－Grid at +180 V
－Collector at 0 V

Vacuum Technology Textbook

J. M. Lafferty: Foundations of vacuum science and technology Wiley(1998)

