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PTAT Circuit
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LM35 Output



Spring-Mass-Dashpot System: Modelling

x : Displacement of the mass from its equilibrium position

mẍ + bẋ + kx = F (2)

F : Force
v = ẋ : Velocity
Relationship between force and velocity:

mv̈ + bv̇ + kv = Ḟ (3)



Tension in the Dashpot

• Here the applied force F (t) is the input.
• We could consider the velocity v(t) as the output.
• A better choice is to consider the tension in the dashpot, Fd (t) = bv(t), as the

output.
• Fd (t) is the force endured by the dashpot.
• Having both input and output as forces makes the mathematics neater.

Relationship between F (t) and Fd (t):

mF̈d + bḞd + kFd = bḞ (4)



Transfer Function

The transfer function is

T (s) =
Fd (s)

F(s)
=

bs
ms2 + bs + k

=
(b/m)s

s2 + (b/m)s + k/m
(5)

Or,

T (s) =
2αs

s2 + 2αs + ω2
0
,

where,

ω0 =

√
k
m
,

and
b/m = 2α.



Terminology

ω0 is the angular frequency of oscillations in the absence of damping.
α is called the decay constant.
Both ω0 and α have dimensions of the inverse of time.
Alternate Notation: ωn for ω0, 2ζωn for 2α
See for example, Section 3.5 of Linear Control System Analysis and Design with
MATLAB by D’Azzo, Houpis and Sheldon.



Interpretation

An input of est produces an output of T (s)est in the steady state, that is after the
transients have died down.
In this case, the transients will decay to zero because both the roots of
s2 + 2αs + ω2

0 = 0 have negative real parts.



Sinusoidal Input

Let T (jω) = U + jV , so that T (−jω) = U − jV .
Input ejωt produces output T (jω)ejωt =
U cos(ωt)− V sin(ωt) + j [U sin(ωt) + V cos(ωt)].
Input e−jωt produces output T (−jω)e−jωt =
U cos(ωt)− V sin(ωt)− j [U sin(ωt) + V cos(ωt)].
Input cos(ωt) produces output U cos(ωt)− V sin(ωt), which is same as√

U2 + V 2
(

U√
U2 + V 2

cos(ωt)− V√
U2 + V 2

sin(ωt)
)

=
√

U2 + V 2 cos(ωt + Φ) = |T (jω)| cos(ωt + Φ)

where Φ = arctan(V/U), more correctly atan2(V,U), is the angle of T (jω).



Meaning of T (jω)

So for sinusoidal input, the output is also sinusoidal, the amplitude being multiplied
by |T (jω)|, the magnitude of T (jω), and the phase being shifted by the angle of
T (jω).



|T (jω)|

Here

|T (jω)| =

∣∣∣∣∣ 2αjω
2αjω + ω2
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∣∣∣∣∣ =
1√

1 +
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ω2
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)2
. (6)

Maximum Output: |T (jω)| = 1 when ω = ±ω0.
ω0 is called the centre angular frequency.



Sharpness of Response

Half-power Output: This happens when |T (jω)| = 1/
√

2.
Or,

ω2
0 − ω2

2αω
= ±1 (7)

The two quadratic equations to be solved are

ω2 − 2αω − ω2
0 = 0, (8)

and
ω2 + 2αω − ω2

0 = 0. (9)



Half-power Angular Frequencies

The positive root of Eq. 8, called the upper half-power angular frequency is

ω+ = α +
√
ω2

0 + α2 (10)

The positive root of Eq. 9, called the lower half-power angular frequency is

ω− = −α +
√
ω2

0 + α2 (11)

Note: The negative root of Eq. 8 is −ω−, and the negative root of Eq. 9 is −ω+.
∆ω = ω+ − ω− = 2α is called the half-power bandwidth.
Note that

ω+ω− = ω2
0. (12)



Quality Factor Q

Q =
ω0

∆ω
=
ω0

2α
(13)

is a measure of the selectivity or the sharpness of response. A higher Q makes
the response more selective.
So

2α =
ω0

Q
. (14)

In view of this,

T (s) =
ω0s
Q

s2 + ω0s
Q + ω2

0
.

Whenever we see a quadratic denominator, we use the Q notation, even if the
system is not a bandpass system.



Half-power Angular Frequencies Shown for Q = 1.5



ω+ and ω− in terms of ω0 and Q

ω+ = ω0

(√
1 +

1
4Q2 +

1
2Q

)
. (15)

ω− = ω0

(√
1 +

1
4Q2 −

1
2Q

)
. (16)

Also, remember that ω+ω− = ω2
0, and ω+ − ω− = ω0/Q.

Note that,
ω+

ω0
− ω0

ω+
=

1
Q
, (17)

and
ω−
ω0
− ω0

ω−
= − 1

Q
. (18)



|T (jω)| for Q = 10



|T (jω)| for Q = 0.6



BPF Phase

T (jω) =
2αjω

2αjω + ω2
0 − ω2

=
jωω0/Q

jωω0/Q + ω2
0 − ω2

=
1

1 + jQ
(
ω
ω0
− ω0

ω

) . (19)

Phase angle is

T (jω) = arctan

(
Q
(
ω0

ω
− ω

ω0

))
. (20)

Special values:
• T (j0) = π/2.
• T (jω0) = 0.
• T (j∞) = −π/2.
• T (jω−) = π/4.
• T (jω+) = −π/4.

Phase is important because it is often easier to measure.



BPF magnitude and phase on the same plot



LPF System

Example: MEMS Accelerometer
Input is applied force, output can be the displacement x .
Or, to simplify the mathematics, let the force in the spring, kx , be the output. Then

T (s) =
ω2

0

s2 + ω0s
Q + ω2

0
. (21)

Even here, the symbol Q is used.

LPF |T (jω)| shown for Q = 1.1.



HPF System

Example: MEMS Accelerometer
Input is applied force, output can be the acceleration ẍ .
Or, to simplify the mathematics, let the force acting on the mass, mẍ , be the
output. Then

T (s) =
s2

s2 + ω0s
Q + ω2

0
. (22)

The same symbol Q is used.

HPF |T (jω)| shown for Q = 1.1.



Second Order LPF Magnitude Response

T (jω) =
ω2

0

ω2
0 − ω2 + j ωω0

Q

At what frequency is |T (jω)| maximum?
The numerator is constant. The square of the magnitude of the denominator is

(ω2
0 − ω2)2 +

ω2ω2
0

Q2 = ω4
0 + ω4 − 2ω2

0ω
2 +

ω2ω2
0

Q2

= ω4
0 + ω4 − 2ω2

0ω
2
(

1− 1
2Q2

)
We will try to complete squares here. The result depends on the value of Q.



Magnitude Response (continued)

If Q ≤ 1/
√

2, all terms are non-negative and the denominator is an increasing
function of ω.
In that case, |T (jω)| has a maximum value of 1 at ω = 0. For any other ω, |T (jω)|
is a monotonically decreasing function of |ω|. We then say that there is no peaking.



Magnitude Response (continued)

If Q > 1/
√

2, we can complete the square to get the denominator magnitude
squared as (

ω2 − ω2
0

(
1− 1

2Q2

))2

+ ω4
0

1
Q2

(
1− 1

4Q2

)
So |T (jω)| is maximum when

|ω| = ωL = ω0

√
1− 1

2Q2 . (23)

|T (jωL)| =
Q√

1− 1
4Q2

(24)

This gives rise to peaking.
Also, note that |T (jω0)| = Q, for the LPF.



Case of Peaking



Case of No Peaking



Pressure Sensors for Vacuum Systems

• Vacuum System: Uses pumps to remove air from a chamber.
• Very low pressures are needed.
• Some experiments cannot be done unless the pressure is lower than a

specified value.
• Sensors which indicate the pressure accurately are needed.



Commonly used Pressure Units

• Pascal (Pa): 1 newton per square metre (SI Unit)
• 1 bar = 105 Pa = 100 kPa
• Technical Atmosphere: 1 at = 1 kgf per centimetre squared = 98066.5 Pa
• Standard Atmosphere: 101325 Pa = 760 Torr
• 1 Torr = 133.3224 Pa (approximately 1 mmHg) (named after Torricelli)
• 1 pound force per square inch = 1 lbf /(in)2 = 6894.757 Pa



Low Pressure Sensors

Low pressure: Pressure less than 1 mbar
Low pressure sensors are called pressure gauges.
Three Important Low Pressure Gauges:

Type Working Principle Range
Pirani Gauge Heat Convection 0.5 Torr to 10−4 Torr
Penning Gauge Ionization: Cold cathode 10−2 mbar to 10−7 mbar
Bayard-Alpert Gauge Ionization: Hot cathode 10−3 mbar to 10−10 mbar



Pirani Gauge

Thermal Convection: Lower pressure⇒ Less heat carried away
⇒ More heating of resistor⇒ Higher resistance



Pirani Gauge



Penning Gauge
Cold cathode: Requires 2 to 4 kV
Starting problem at very low pressures.
Magnetic field often used for longer travel paths of electrons.



Bayard-Alpert Gauge

Avoids x-ray ionization problem of the triode gauge
Hot cathode: Can measure very low pressures



Bayard-Alpert Gauge

Example potentials at the electrodes:
• Filament at +45 V
• Grid at +180 V
• Collector at 0 V



Vacuum Technology Textbook

J. M. Lafferty: Foundations of vacuum science and technology
Wiley(1998)


