IN 221 （AUG）3：0 Sensors and Transducers Electromagnetic Sensors and Transducers Lecture 6

A．Mohanty

Department of Instrumentation and Applied Physics（IAP）
Indian Institute of Science
Bangalore 560012
September 4， 2023

Energy Stored in a Capacitor

Charge stored:

$$
\begin{equation*}
Q=C v . \tag{1}
\end{equation*}
$$

Current:

$$
\begin{equation*}
i=\frac{\mathrm{d} Q}{\mathrm{~d} t}=C \frac{\mathrm{~d} v}{\mathrm{~d} t} . \tag{2}
\end{equation*}
$$

Power:

$$
\begin{equation*}
p=v i=C v \frac{\mathrm{~d} v}{\mathrm{~d} t}=\frac{\mathrm{d}\left(\frac{1}{2} C v^{2}\right)}{\mathrm{d} t} . \tag{3}
\end{equation*}
$$

Energy stored:

$$
\begin{equation*}
U=\frac{1}{2} C v^{2}=\frac{1}{2} C\left(\frac{Q}{C}\right)^{2}=\frac{1}{2} \frac{Q^{2}}{C} . \tag{4}
\end{equation*}
$$

U was expressed in terms of charge Q, because in an isolated capacitor, Q is a constant.

What happens when we reconfigure, that is change the position and/or orientation, of the electrodes of a capacitor?

- The capacitance C, and the stored energy U change.
- If the capacitor is isolated, the stored charge Q does not change.
- This can be used to derive the force and the torque exterted by an electrode of a charged capacitor.
- In this study, we only derive an expression for the force.

Force exterted by an electrode

Capacitor Electrodes

The figure shows electrodes of a capacitor which is charged to charge Q. Irregular shapes are shown, because this is part of a general derivation that is not specific to any standard type of capacitor.
Let one of the electrodes, say Electrode A, be considered movable.

Force exterted by an electrode

Capacitor Electrodes
Quantities like C, and U are now functions of the position and the orientation of Electrode A.
Assume that the orientation is fixed. Let the position of Electrode A be specified by coordinates x, y, and z of marked point on it. Then

$$
\begin{equation*}
C=C(x, y, z), \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
U=U(x, y, z) . \tag{6}
\end{equation*}
$$

Force exterted by an electrode

Let the force exterted by Electrode A, when it is held in place, be \vec{F}.
Changing the position of the electrode by a small displacement $\Delta \vec{r}$ would require work $-\vec{F} \cdot \Delta \vec{r}$ to be done on the system.
If the capacitor is isolated, this work would be added to the stored energy of the capacitor. So we have

$$
\begin{equation*}
\vec{F}=-\operatorname{grad} U=-\operatorname{grad}\left(\frac{1}{2} \frac{Q^{2}}{C}\right)=\frac{1}{2} \frac{Q^{2}}{C^{2}} \operatorname{grad} C=\frac{1}{2} v^{2} \operatorname{grad} C \tag{7}
\end{equation*}
$$

Parallel Plate Capacitor

Force in a parallel plate capacitor

Parallel Plate Capacitor
For the parallel plate capacitor shown,

$$
\begin{equation*}
C=\frac{\epsilon_{0} A}{h} . \tag{8}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{grad} C=-\frac{\epsilon_{0} A}{h^{2}} \hat{\mathbf{h}}, \tag{9}
\end{equation*}
$$

rate of change of C in directions perpendicular to h being 0 . On the electrode on the right,

$$
\begin{equation*}
\vec{F}=\frac{1}{2} v^{2} \operatorname{grad} C .=-\frac{1}{2} \frac{\epsilon_{0} A v^{2}}{h^{2}} \hat{\mathbf{h}} . \tag{10}
\end{equation*}
$$

the negative sign indicating a force to the left.

We have neglected to mention the first-order systems which should be studied before the second-order systems.

Spring-Mass-Dashpot System: Modelling

x : Displacement of the mass from its equilibrium position

$$
\begin{equation*}
m \ddot{x}+b \dot{x}+k x=F \tag{11}
\end{equation*}
$$

F : Force
What happens when $m \rightarrow 0$?

$$
\begin{equation*}
b \dot{x}+k x=F \tag{12}
\end{equation*}
$$

Spring-Dashpot System

$$
\begin{equation*}
b \dot{x}+k x=F \tag{13}
\end{equation*}
$$

Study of two possible systems:

- Input is F, output is x, or to have the same dimension, $F_{\text {spring }}=k x$, tension force in the spring.
- Input is F, output is \dot{x}, or to have the same dimension, $F_{\text {dashpot }}=b \dot{x}$, tension force in the dashpot.

First-order LPF: Input F, output $F_{\text {spring }}=k x$

$$
\begin{equation*}
T(s)=\frac{k}{b s+k}=\frac{k / b}{s+k / b}=\frac{\omega_{0}}{s+\omega_{0}}, \tag{14}
\end{equation*}
$$

where,

$$
\begin{equation*}
\omega_{0}=k / b . \tag{15}
\end{equation*}
$$

This is an example of a first-order lowpass filter.

$$
\begin{equation*}
T(s)=\frac{b s}{b s+k}=\frac{s}{s+k / b}=\frac{s}{s+\omega_{0}}, \tag{16}
\end{equation*}
$$

where,

$$
\begin{equation*}
\omega_{0}=k / b . \tag{17}
\end{equation*}
$$

This is an example of a first-order highpass filter.

First-order LPF

$$
T(s)=\frac{\omega_{0}}{s+\omega_{0}}
$$

where, $\omega_{0}=k / b$.

First-order HPF

$$
T(s)=\frac{s}{s+\omega_{0}}
$$

where, $\omega_{0}=k / b$.

$$
\begin{gathered}
T(s)=\frac{\omega_{0}}{s+\omega_{0}} \\
T(j \omega)=\frac{1}{1+j \omega / \omega_{0}} \\
|T(j \omega)|=\frac{1}{\sqrt{1+\left(\omega / \omega_{0}\right)^{2}}}
\end{gathered}
$$

So $\left|T\left(j \omega_{0}\right)\right|=1 / \sqrt{2}$.
For $|\omega| \gg \omega_{0},|T(j \omega)| \approx \omega_{0} /|\omega|$.

First Order LPF Pole-zero Diagram

$$
\mathrm{s}=\sigma+\mathrm{j} \omega \text { plane }
$$

First Order LPF TF Magnitude Plot

First Order LPF TF Phase Plot

$$
\begin{gathered}
T(s)=\frac{s}{s+\omega_{0}} \\
T(j \omega)=\frac{1}{1-j \omega_{0} / \omega} \\
|T(j \omega)|=\frac{1}{\sqrt{1+\left(\omega_{0} / \omega\right)^{2}}}
\end{gathered}
$$

So $\left|T\left(j \omega_{0}\right)\right|=1 / \sqrt{2}$.
For $|\omega| \ll \omega_{0},|T(j \omega)| \approx|\omega| / \omega_{0}$.

First Order HPF Pole-zero Diagram

$$
\mathrm{s}=\sigma+\mathrm{j} \omega \text { plane }
$$

First Order HPF TF Magnitude Plot

First Order HPF TF Phase Plot

Second-order Transfer Functions: LPF, BPF, and HPF

Now we recall the second-order transfer functions connected with the spring-mass-dashpot system.
LPF (Lowpass Filter):

$$
\begin{equation*}
T_{\mathrm{LPF}}(s)=\frac{\omega_{0}^{2}}{s^{2}+\frac{\omega_{0}}{Q} s+\omega_{0}^{2}} \tag{18}
\end{equation*}
$$

BPF (Bandpass Filter):

$$
\begin{equation*}
T_{\mathrm{BPF}}(s)=\frac{\frac{\omega_{0}}{Q} s}{s^{2}+\frac{\omega_{0}}{Q} s+\omega_{0}^{2}} . \tag{19}
\end{equation*}
$$

HPF (Highpass Filter):

$$
\begin{equation*}
T_{\mathrm{HPF}}(s)=\frac{s^{2}}{s^{2}+\frac{\omega_{0}}{Q} s+\omega_{0}^{2}} \tag{20}
\end{equation*}
$$

When discussing a particular type of filter, the subscript of T may be omitted.

$$
T(s)=\frac{2 \alpha s}{s^{2}+2 \alpha s+\omega_{0}^{2}}
$$

For small loss, that is for small b, or for small $\alpha, T(s)$ has poles at $-\alpha \pm j \sqrt{\omega_{0}^{2}-\alpha^{2}}$. So α is the decay constant.
ω_{0} is the angular frequency of oscillations for no loss.

$$
\begin{gathered}
T(s)=\frac{2 \alpha s}{s^{2}+2 \alpha s+\omega_{0}^{2}} \\
T(j \omega)=\frac{j 2 \alpha \omega}{-\omega^{2}+j 2 \alpha \omega+\omega_{0}^{2}}=\frac{1}{1+\frac{\omega_{0}^{2}-\omega^{2}}{j 2 \alpha \omega}}=\frac{1}{1+j \frac{\omega^{2}-\omega_{0}^{2}}{2 \alpha \omega}}
\end{gathered}
$$

$$
T(j \omega)=\frac{1}{1+j \frac{\omega^{2}-\omega_{0}^{2}}{2 \alpha \omega}}
$$

When is $|T(j \omega)|=1$?
This happens when $\omega= \pm \omega_{0}$.
At other values of $\omega,|T(j \omega)|<1$.

$$
T(j \omega)=\frac{1}{1+j \frac{\omega^{2}-\omega_{0}^{2}}{2 \alpha \omega}}
$$

When is $|T(j \omega)|=\frac{1}{\sqrt{2}}$?
This happens when $\frac{\omega^{2}-\omega_{0}^{2}}{2 \alpha \omega}= \pm 1$.
Or, $\omega^{2}-\omega_{0}^{2}= \pm 2 \alpha \omega$.
The two quadratic equations are,
$\omega^{2}-2 \alpha \omega-\omega_{0}^{2}=0$,
and
$\omega^{2}+2 \alpha \omega-\omega_{0}^{2}=0$.
The positive root of the first quadratic equation is $\omega_{+}=\alpha+\sqrt{\alpha^{2}+\omega_{0}^{2}}$.
The positive root of the second quadratic equation is $\omega_{-}=-\alpha+\sqrt{\alpha^{2}+\omega_{0}^{2}}$.

Magnitude Plot of the BPF Transfer Function

Note that $\omega_{+} \omega_{-}=\omega_{0}^{2}$. Half-power angular bandwidth: $\Delta \omega=\omega_{+}-\omega_{-}=2 \alpha$. Quality factor

$$
Q=\frac{\omega_{0}}{\Delta \omega}=\frac{\omega_{0}}{2 \alpha}
$$

Q is a measure of the selectivity of the BPF．Note that this definition in the frequency domain is the original，exact definition of Q ．
Note that $2 \alpha=\Delta \omega=\frac{\omega_{0}}{Q}$ ．

$$
\begin{aligned}
& \omega_{+}=\left(\sqrt{1+\frac{1}{4 Q^{2}}}+\frac{1}{2 Q}\right) \omega_{0} \\
& \omega_{-}=\left(\sqrt{1+\frac{1}{4 Q^{2}}}-\frac{1}{2 Q}\right) \omega_{0}
\end{aligned}
$$

Remember that ω_{0} is the geometric mean of ω_{+}and ω_{-}． It is NOT the arithmetic mean of ω_{+}and ω_{-}．

Phase Plot of the BPF Transfer Function

Phase is easier to measure!

$$
T(s)=\frac{2 \alpha s}{s^{2}+2 \alpha s+\omega_{0}^{2}}
$$

Since $2 \alpha=\frac{\omega_{0}}{Q}$,

$$
T(s)=\frac{\frac{\omega_{0}}{Q} s}{s^{2}+\frac{\omega_{0}}{Q} s+\omega_{0}^{2}}
$$

This is the standard form of the transfer function of the BPF.
For the mass-spring-dashpot BPF system, $\omega_{0}=\sqrt{k / m}$, and $2 \alpha=b / m$. So,

$$
\begin{equation*}
Q=\frac{\omega_{0}}{2 \alpha}=\frac{\sqrt{k / m}}{b / m}=\frac{\sqrt{k m}}{b} . \tag{21}
\end{equation*}
$$

For other circuits or physical systems, these expressions will need to be determined in terms of the parameters of that system.

$$
T(s)=\frac{H \frac{\omega_{0}}{Q} s}{s^{2}+\frac{\omega_{0}}{Q} s+\omega_{0}^{2}}
$$

ω_{0} ：Centre angular frequency
Q：Quality factor
H ：Gain factor

Second Order BPF Pole Locations

Find zeros of $s^{2}+\frac{\omega_{0}}{Q} s+\omega_{0}^{2}$.
Case $Q>\frac{1}{2}$ (Underdamped)

$$
\begin{aligned}
& s_{1}=-\frac{\omega_{0}}{2 Q}+j \omega_{0} \sqrt{1-\frac{1}{4 Q^{2}}} \\
& s_{2}=-\frac{\omega_{0}}{2 Q}-j \omega_{0} \sqrt{1-\frac{1}{4 Q^{2}}}
\end{aligned}
$$

Complex conjugate pair of poles. $s_{1} s_{2}=\omega_{0}^{2}$.
Case $Q=\frac{1}{2}$ (Critically damped)

$$
s_{1}=s_{2}=-\omega_{0}
$$

Equal, negative real poles.

Case $Q<\frac{1}{2}$ (Overdamped)

$$
\begin{aligned}
& s_{1}=-\frac{\omega_{0}}{2 Q}+\omega_{0} \sqrt{\frac{1}{4 Q^{2}}-1} \\
& s_{2}=-\frac{\omega_{0}}{2 Q}-\omega_{0} \sqrt{\frac{1}{4 Q^{2}}-1}
\end{aligned}
$$

Unequal negative real poles. $s_{1} s_{2}=\omega_{0}^{2}$.

Second Order BPF Pole-zero Diagram (Underdamped)

Underdamped system: Shown for $Q>\frac{1}{2}$. Has two poles and one zero.

Second Order BPF Pole-zero Diagram (Critically Damped)

Critically damped system: Shown for $Q=\frac{1}{2}$. Here, $s_{1}=s_{2}=-\omega_{0}$. Has two poles and one zero.

Second Order BPF Pole-zero Diagram (Overdamped)

Overdamped system: Shown for $Q<\frac{1}{2}$. Has two poles and one zero.

LPF:

$$
\begin{equation*}
T_{\mathrm{LPF}}(s)=\frac{\omega_{0}^{2}}{s^{2}+\frac{\omega_{0}}{Q} s+\omega_{0}^{2}} . \tag{22}
\end{equation*}
$$

HPF:

$$
\begin{equation*}
T_{\mathrm{HPF}}(s)=\frac{s^{2}}{s^{2}+\frac{\omega_{0}}{Q} s+\omega_{0}^{2}} . \tag{23}
\end{equation*}
$$

Case of Peaking

Case of No Peaking

$$
T(s)=\frac{H \omega_{0}^{2}}{s^{2}+\frac{\omega_{0}}{Q} s+\omega_{0}^{2}}
$$

ω_{0} : Centre angular frequency
Q : Quality factor
H: Gain factor

Second Order LPF Pole－zero Diagram（Underdamped）

Shown for $Q>\frac{1}{2}$ ．Has two poles and no zero．

$$
T(s)=\frac{H s^{2}}{s^{2}+\frac{\omega_{0}}{Q} s+\omega_{0}^{2}}
$$

ω_{0} : Centre angular frequency
Q: Quality factor
H : Gain factor

Second Order HPF Pole-zero Diagram (Underdamped)

$\mathrm{s}=\sigma+\mathrm{j} \omega$ plane

Shown for $Q>\frac{1}{2}$. Has two poles and two zeros.
$T(j \omega)$ Phase

Note that $T_{\text {HPF }}(j \omega) / T_{\mathrm{BPF}}(j \omega)=j Q \omega / \omega_{0}$, and $T_{\mathrm{LPF}}(j \omega) / T_{\mathrm{BPF}}(j \omega)=-j Q \omega_{0} / \omega$. So for positive ω, the HPF phase leads the BPF phase by $\pi / 2$, while the LPF phase lags the BPF phase by $\pi / 2$, as the plot shows.
In the same way, for the first-order case, HPF phase leads the LPF phase by $\pi / 2$.
Points to note:

- Unlike the magnitude plots, the phase plots are monotonic.
- HPF, BPF, and LPF phase plots are very simply related to one another.
- Phase is often easier to measure.

Notation and Terminology

Note that even though the second order LPF and HPF are not really bandpass filters, we still use the notations ω_{0} and Q.
The meanings are different, even though the expressions are the same.

