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Energy Stored in a Capacitor

Charge stored:
Q = Cv . (1)

Current:
i =

dQ
dt

= C
dv
dt
. (2)

Power:

p = vi = Cv
dv
dt

=
d
(1

2Cv2)
dt

. (3)

Energy stored:

U =
1
2

Cv2 =
1
2

C
(

Q
C

)2

=
1
2

Q2

C
. (4)

U was expressed in terms of charge Q, because in an isolated capacitor, Q is a
constant.



Reconfiguration

What happens when we reconfigure, that is change the position and/or orientation,
of the electrodes of a capacitor?
• The capacitance C, and the stored energy U change.
• If the capacitor is isolated, the stored charge Q does not change.
• This can be used to derive the force and the torque exterted by an electrode

of a charged capacitor.
• In this study, we only derive an expression for the force.



Force exterted by an electrode

The figure shows electrodes of a capacitor which is charged to charge Q. Irregular
shapes are shown, because this is part of a general derivation that is not specific
to any standard type of capacitor.
Let one of the electrodes, say Electrode A, be considered movable.



Force exterted by an electrode

Quantities like C, and U are now functions of the position and the orientation of
Electrode A.
Assume that the orientation is fixed. Let the position of Electrode A be specified by
coordinates x , y , and z of marked point on it. Then

C = C(x , y , z), (5)

and
U = U(x , y , z). (6)



Force exterted by an electrode

Let the force exterted by Electrode A, when it is held in place, be ~F .
Changing the position of the electrode by a small displacement ∆~r would require
work −~F ·∆~r to be done on the system.
If the capacitor is isolated, this work would be added to the stored energy of the
capacitor. So we have

~F = −grad U = −grad
(

1
2

Q2

C

)
=

1
2

Q2

C2 grad C =
1
2

v2 grad C. (7)



Force in a parallel plate capacitor



Force in a parallel plate capacitor

For the parallel plate capacitor shown,

C =
ε0A
h
. (8)

grad C = −ε0A
h2 ĥ, (9)

rate of change of C in directions perpendicular to h being 0. On the electrode on
the right,

~F =
1
2

v2 grad C. = −1
2
ε0Av2

h2 ĥ. (10)

the negative sign indicating a force to the left.



Spring-Mass-Dashpot System: Special case

We have neglected to mention the first-order systems which should be studied
before the second-order systems.



Spring-Mass-Dashpot System: Modelling

x : Displacement of the mass from its equilibrium position

mẍ + bẋ + kx = F (11)

F : Force
What happens when m→ 0?

bẋ + kx = F (12)



Spring-Dashpot System

bẋ + kx = F (13)

Study of two possible systems:
• Input is F , output is x , or to have the same dimension, Fspring = kx , tension

force in the spring.
• Input is F , output is ẋ , or to have the same dimension, Fdashpot = bẋ , tension

force in the dashpot.



First-order LPF: Input F , output Fspring = kx

T (s) =
k

bs + k
=

k/b
s + k/b

=
ω0

s + ω0
, (14)

where,
ω0 = k/b. (15)

This is an example of a first-order lowpass filter.



First-order HPF: Input F , output Fdashpot = bẋ

T (s) =
bs

bs + k
=

s
s + k/b

=
s

s + ω0
, (16)

where,
ω0 = k/b. (17)

This is an example of a first-order highpass filter.



First-order LPF

T (s) =
ω0

s + ω0

where, ω0 = k/b.



First-order HPF

T (s) =
s

s + ω0

where, ω0 = k/b.



First Order LPF Transfer Function

T (s) =
ω0

s + ω0

T (jω) =
1

1 + jω/ω0

|T (jω)| =
1√

1 + (ω/ω0)2

So |T (jω0)| = 1/
√

2.
For |ω| � ω0, |T (jω)| ≈ ω0/|ω|.



First Order LPF Pole-zero Diagram

Has one pole and no zero.



First Order LPF TF Magnitude Plot



First Order LPF TF Phase Plot



First Order HPF Transfer Function

T (s) =
s

s + ω0

T (jω) =
1

1− jω0/ω

|T (jω)| =
1√

1 + (ω0/ω)2

So |T (jω0)| = 1/
√

2.
For |ω| � ω0, |T (jω)| ≈ |ω|/ω0.



First Order HPF Pole-zero Diagram

Has one pole and one zero.



First Order HPF TF Magnitude Plot



First Order HPF TF Phase Plot



Second-order Transfer Functions: LPF, BPF, and HPF

Now we recall the second-order transfer functions connected with the
spring-mass-dashpot system.
LPF (Lowpass Filter):

TLPF(s) =
ω2

0

s2 + ω0
Q s + ω2

0
. (18)

BPF (Bandpass Filter):

TBPF(s) =
ω0
Q s

s2 + ω0
Q s + ω2

0
. (19)

HPF (Highpass Filter):

THPF(s) =
s2

s2 + ω0
Q s + ω2

0
. (20)

When discussing a particular type of filter, the subscript of T may be omitted.



The Second-order Bandpass Transfer Function

T (s) =
2αs

s2 + 2αs + ω2
0

For small loss, that is for small b, or for small α, T (s) has poles at −α± j
√
ω2

0 − α2.
So α is the decay constant.
ω0 is the angular frequency of oscillations for no loss.



Magnitude Response in the Frequency Domain

T (s) =
2αs

s2 + 2αs + ω2
0

T (jω) =
j2αω

−ω2 + j2αω + ω2
0

=
1

1 +
ω2

0−ω2

j2αω

=
1

1 + j ω
2−ω2

0
2αω



Centre Angular Frequency

T (jω) =
1

1 + j ω
2−ω2

0
2αω

When is |T (jω)| = 1?
This happens when ω = ±ω0.
At other values of ω, |T (jω)| < 1.



Half-power Angular Frequencies

T (jω) =
1

1 + j ω
2−ω2

0
2αω

When is |T (jω)| = 1√
2
?

This happens when ω2−ω2
0

2αω = ±1.
Or, ω2 − ω2

0 = ±2αω.
The two quadratic equations are,
ω2 − 2αω − ω2

0 = 0,
and
ω2 + 2αω − ω2

0 = 0.

The positive root of the first quadratic equation is ω+ = α +
√
α2 + ω2

0.

The positive root of the second quadratic equation is ω− = −α +
√
α2 + ω2

0.



Magnitude Plot of the BPF Transfer Function

Note that ω+ω− = ω2
0. Half-power angular bandwidth: ∆ω = ω+ − ω− = 2α.

Quality factor
Q =

ω0

∆ω
=
ω0

2α



What is Q?

Q is a measure of the selectivity of the BPF. Note that this definition in the
frequency domain is the original, exact definition of Q.
Note that 2α = ∆ω = ω0

Q .

ω+ =

(√
1 +

1
4Q2 +

1
2Q

)
ω0

ω− =

(√
1 +

1
4Q2 −

1
2Q

)
ω0

Remember that ω0 is the geometric mean of ω+ and ω−.
It is NOT the arithmetic mean of ω+ and ω−.



Phase Plot of the BPF Transfer Function

Phase is easier to measure!



BPF Transfer Function Rewritten

T (s) =
2αs

s2 + 2αs + ω2
0

Since 2α = ω0
Q ,

T (s) =
ω0
Q s

s2 + ω0
Q s + ω2

0

This is the standard form of the transfer function of the BPF.
For the mass-spring-dashpot BPF system, ω0 =

√
k/m, and 2α = b/m. So,

Q =
ω0

2α
=

√
k/m

b/m
=

√
km
b

. (21)

For other circuits or physical systems, these expressions will need to be
determined in terms of the parameters of that system.



General Second Order BPF Transfer Function

T (s) =
H ω0

Q s
s2 + ω0

Q s + ω2
0

ω0: Centre angular frequency
Q: Quality factor
H: Gain factor



Second Order BPF Pole Locations
Find zeros of s2 + ω0

Q s + ω2
0.

Case Q > 1
2 (Underdamped)

s1 = − ω0

2Q
+ jω0

√
1− 1

4Q2

s2 = − ω0

2Q
− jω0

√
1− 1

4Q2

Complex conjugate pair of poles. s1s2 = ω2
0.

Case Q = 1
2 (Critically damped)

s1 = s2 = −ω0.

Equal, negative real poles.



Second Order BPF Pole Locations

Case Q < 1
2 (Overdamped)

s1 = − ω0

2Q
+ ω0

√
1

4Q2 − 1

s2 = − ω0

2Q
− ω0

√
1

4Q2 − 1

Unequal negative real poles. s1s2 = ω2
0.



Second Order BPF Pole-zero Diagram (Underdamped)

Underdamped system: Shown for Q > 1
2 . Has two poles and one zero.



Second Order BPF Pole-zero Diagram (Critically Damped)

Critically damped system: Shown for Q = 1
2 . Here, s1 = s2 = −ω0. Has two poles

and one zero.



Second Order BPF Pole-zero Diagram (Overdamped)

Overdamped system: Shown for Q < 1
2 . Has two poles and one zero.



Second Order LPF and HPF

LPF:

TLPF(s) =
ω2

0

s2 + ω0
Q s + ω2

0
. (22)

HPF:

THPF(s) =
s2

s2 + ω0
Q s + ω2

0
. (23)



Case of Peaking



Case of No Peaking



General Second Order LPF Transfer Function

T (s) =
Hω2

0

s2 + ω0
Q s + ω2

0

ω0: Centre angular frequency
Q: Quality factor
H: Gain factor



Second Order LPF Pole-zero Diagram (Underdamped)

Shown for Q > 1
2 . Has two poles and no zero.



General Second Order HPF Transfer Function

T (s) =
Hs2

s2 + ω0
Q s + ω2

0

ω0: Centre angular frequency
Q: Quality factor
H: Gain factor



Second Order HPF Pole-zero Diagram (Underdamped)

Shown for Q > 1
2 . Has two poles and two zeros.



T (jω) Phase



Observations

Note that THPF(jω)/TBPF(jω) = jQω/ω0, and TLPF(jω)/TBPF(jω) = −jQω0/ω.
So for positive ω, the HPF phase leads the BPF phase by π/2, while the LPF
phase lags the BPF phase by π/2, as the plot shows.
In the same way, for the first-order case, HPF phase leads the LPF phase by π/2.
Points to note:
• Unlike the magnitude plots, the phase plots are monotonic.
• HPF, BPF, and LPF phase plots are very simply related to one another.
• Phase is often easier to measure.



Notation and Terminology

Note that even though the second order LPF and HPF are not really bandpass
filters, we still use the notations ω0 and Q.
The meanings are different, even though the expressions are the same.


