IN 221 (AUG) 3:0 Sensors and Transducers

Department of Instrumentation and Applied Physics (IAP) and Centre for Product Design and Manufacturing (CPDM) Indian Institute of Science Bangalore 560012

07/08/2024

<□▶ < □▶ < 三▶ < 三▶ = 三 のへぐ

Course

IN 221 (AUG) 3:0 Sensors and Transducers

Introductory course on sensors and transducers

Class Hours

MWF 12:00 to 13:00 Lecture Hall 1, IAP

Instructors and Topics

- Manish Arora: Industrial applications of sensors and transducers, Ultrasonic sensors and transducers, Mechatronics
- Asha Bhardwaj: Microfabrication, Making micro and nano scale sensors and transducers
- Chandni Usha: Semiconductor sensors and transducers
- Baladitya Suri: SAW devices, signal processing and noise
- Sai Siva Gorthi: Optical characterization, sensing, measurement
- **G. R. Jayanth**: MEMS sensors and transducers, Scaling laws for miniaturization
- Atanu Mohanty: Electromagnetic sensors and transducers

What is a sensor?

- Device that can be used to detect or measure a given physical quantity.
- Almost always used with other electronics.

Examples of sensors

- Microphone
- Photodiode, LDR (Light Dependent Resistor)
- CCD array (imaging element in digital camera)
- Thermocouple, thermistor
- Search coil, Hall sensor
- Antenna
- Piezoelectric sensors
- · Chemical and gas sensors

What is a transducer?

- Device that converts one form of energy to another.
- Usually the input is an electrical signal and the output is some other physical quantity.
- Actuator: Transducer whose output is mechanical motion.

Examples of transducers

- Loudspeaker
- LED (Light Emitting Diode)
- Heater
- Coil
- Antenna
- Motors of various kinds
- Piezoelectric actuators

Examples

Example 1: Smartphone

- Transducers: Speaker, display, buzzer motor
- Sensors: Microphone, camera, accelerometer

Example 2: Making Plastic Sheets from Molten Plastic

- Transducers: Motor, heater
- Sensors for sensing thickness, temperature, and chemicals

Example 3: Generic Closed Loop Control System

- The *plant* will have *transducers*.
- The *feedback* signals will come from *sensors*.

Sensor

 $Physical \ quantity \rightarrow Electrical \ signal$

Transducer Electrical signal → Physical quantity

- Many applications: Industry, Household appliances, Agriculture, Traffic management, Security, Weather monitoring, Scientific research
- The same device can be used as a sensor or as a transducer.
 - Piezoelectric device
 - Antenna
 - Loudspeaker
- Response is not always linear, not even continuous.
- There are many different kinds sensors and transducers.
- Based on a very wide range of working principles

Types of Sensors

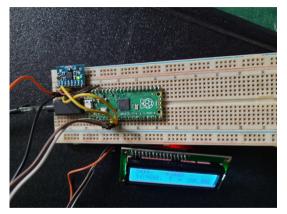
Packaged vs. Constructed

- Many types of sensors are available in packaged form.
- Still, in industrial work, engineers sometimes make their own sensors.

Types of Output

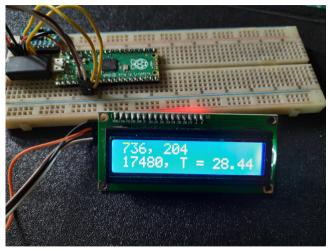
- Analogue output
 - Voltage proportional to the quantity
 - PWM (Pulse Width Modulation): Pulse width proportional to the quantity

 $\nabla \rho \phi = \rho \phi = \rho \phi \phi \phi$

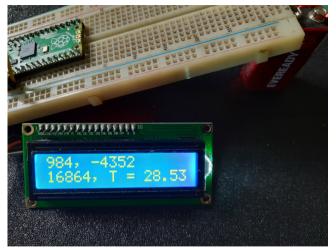

- Note: PWM is still considered analogue and NOT digital.
- Digital output
 - Parallel output
 - Serial output: One of several protocols
 - I²C
 - SPI
 - . . .

Accelerometer MPU6050

2 Pressure and temperature sensor BMP280


Other examples of readily available sensor and actuator modules will be discussed in the future.

Example 1: Accelerometer MPU6050

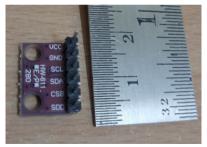

Small board: 16 mm \times 20 mm, MPU6050 Accelerometer module (\approx Rs. 115) Big board: 22 mm \times 53 mm, Raspberry Pi Pico Powered from the USB Port

Example 1: Accelerometer MPU6050

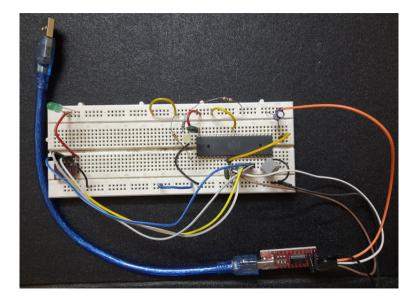
First line: *x* and *y* components of acceleration in device units Second line: *z* component of acceleration in device units, temperature Horizontal Board: a_z : 17480 device units

Example 1: Accelerometer MPU6050

First line: *x* and *y* components of acceleration in device units Second line: *z* component of acceleration in device units, temperature Tilted Board: a_z : 16864 device units


```
Length of breadboard: 16.5 cm
Height of battery: 4.3 cm
```

```
akm@akm:~/pico/pico-examples/i2c/lcd_1602_i2c$ lua
Lua 5.3.3 Copyright (C) 1994-2016 Lua.org, PUC-Rio
> math.deg(math.acos(16864/17480))
15.256010576751
> math.deg(math.asin(4.3/16.5))
15.106026666421
>
```


Tilt angle: \approx 15 degrees

Example 2: BMP280

- Pressure and Temperature
- Inexpensive: \approx Rs. 70
- Supports both SPI and $\rm I^2C$
- Another sensor BME280 can also measure humidity.

Example 2: System with BMP280

readBMP280.tcl	^	_		×
ID: 58 Hex => (Bosch BMP 280)				
Calibration Data: 226F1D6818FC3390C7D5D00B44019500F9FF8C30	F8C6	5701	1700	000
Readings: 7BAEB082A520				
p = 908.0735 hPa = 681.1111 mmHg				
T = 25.32 degree C				

Questions to ask about any sensor or transducer

- · How does this sensor or transducer work?
- How is it fabricated?
- What kind of electronics is used in this sensor or transducer?
- How can we get readings from this sensor?
- How can we drive this transducer?
- What are its applications?
- How much does it cost?

Evaluation

- 7 instructors
- \approx 6 lectures each
- \approx 14 marks per instructor
 - Homework assignment
 - Examination in class
 - Take-home examination
- IISc Rules
 - Sessional: 50 marks
 - Final: 50 marks
- Attendance is important.
 - Low attendance \Rightarrow INCOMPLETE grade
 - · Penalties specific to this course