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First-order System Example

• In Lecture 3, the spring-mass-dashpot system model was discussed.
• It is a second-order system.
• We have neglected to mention the first-order systems which should be

studied first.



Spring-Mass-Dashpot System: Modelling

x : Displacement of the mass from its equilibrium position

mẍ + bẋ + kx = F (1)

F : Force
What happens when m→ 0?

bẋ + kx = F (2)



Spring-Dashpot System

bẋ + kx = F (3)

Study of two possible systems:
• Input is F , output is x , or to have the same dimension, Fspring = kx , tension

force in the spring.
• Input is F , output is ẋ , or to have the same dimension, Fdashpot = bẋ , tension

force in the dashpot.



First-order LPF: Input F , output Fspring = kx

T (s) =
k

bs + k
=

k/b
s + k/b

=
ω0

s + ω0
, (4)

where,
ω0 = k/b. (5)

This is an example of a first-order lowpass filter.



First-order HPF: Input F , output Fdashpot = bẋ

T (s) =
bs

bs + k
=

s
s + k/b

=
s

s + ω0
, (6)

where,
ω0 = k/b. (7)

This is an example of a first-order highpass filter.



Transfer Function: Interpretation

Transfer functions are useful for understanding the behaviour of LTI (linear
time-invariant) systems.

An input of est produces an output of T (s)est in the steady state, that is after the
transients have died down.
This way of thinking is useful even though the formal definition of the transfer
functions involves Laplace transforms.



Transfer Function: Properties

• T (s) is real for real s.
• T (s) = T (s).
• For lumped-element systems, that is for systems described by ODEs, T (s) is

a ratio of two real polynomials in s.
• Real polynomial: Coefficients are real, even though for complex s its value

may be complex.
• Poles and zeros of T (s) are important for the study of the system.



Sinusoidal Input

Let T (jω) = U + jV , so that T (−jω) = U − jV .
Input ejωt produces output T (jω)ejωt =
U cos(ωt)− V sin(ωt) + j [U sin(ωt) + V cos(ωt)].
Input e−jωt produces output T (−jω)e−jωt =
U cos(ωt)− V sin(ωt)− j [U sin(ωt) + V cos(ωt)].
Input cos(ωt) produces output U cos(ωt)− V sin(ωt), which is same as√

U2 + V 2
(

U√
U2 + V 2

cos(ωt)− V√
U2 + V 2

sin(ωt)
)

=
√

U2 + V 2 cos(ωt + Φ) = |T (jω)| cos(ωt + Φ)

where Φ = arctan(V/U), more correctly atan2(V,U), is the angle of T (jω).



Meaning of T (jω)

So for sinusoidal input, the output is also sinusoidal, the amplitude being multiplied
by |T (jω)|, the magnitude of T (jω), and the phase being shifted by the angle of
T (jω).



First-order LPF

T (s) =
ω0

s + ω0

where, ω0 = k/b.



First-order HPF

T (s) =
s

s + ω0

where, ω0 = k/b.



First Order LPF Transfer Function

T (s) =
ω0

s + ω0

T (jω) =
1

1 + jω/ω0

|T (jω)| =
1√

1 + (ω/ω0)2

So |T (jω0)| = 1/
√

2.
For |ω| � ω0, |T (jω)| ≈ ω0/|ω|.



First Order LPF Pole-zero Diagram

Has one pole and no zero.



First Order LPF TF Magnitude Plot



First Order LPF TF Phase Plot



First Order HPF Transfer Function

T (s) =
s

s + ω0

T (jω) =
1

1− jω0/ω

|T (jω)| =
1√

1 + (ω0/ω)2

So |T (jω0)| = 1/
√

2.
For |ω| � ω0, |T (jω)| ≈ |ω|/ω0.



First Order HPF Pole-zero Diagram

Has one pole and one zero.



First Order HPF TF Magnitude Plot



First Order HPF TF Phase Plot



Spring-Mass-Dashpot System: Modelling

x : Displacement of the mass from its equilibrium position

mẍ + bẋ + kx = F (8)

F : Force
v = ẋ : Velocity
Relationship between force and velocity:

mv̈ + bv̇ + kv = Ḟ (9)



Tension in the Dashpot

• Here the applied force F (t) is the input.
• We could consider the velocity v(t) as the output.
• A better choice is to consider the tension in the dashpot, Fd (t) = bv(t), as the

output.
• Fd (t) is the force endured by the dashpot.
• Having both input and output as forces makes the mathematics neater.

Relationship between F (t) and Fd (t):

mF̈d + bḞd + kFd = bḞ (10)



Transfer Function

The transfer function is

T (s) =
Fd (s)

F(s)
=

bs
ms2 + bs + k

=
(b/m)s

s2 + (b/m)s + k/m
(11)

Or,

T (s) = TBPF(s) =
2αs

s2 + 2αs + ω2
0
,

where,

ω0 =

√
k
m
,

and
b/m = 2α.

This transfer function is called the transfer function of a second-order bandpass
filter, or BPF.



Terminology

ω0 is the angular frequency of oscillations in the absence of damping.
α is called the decay constant.
Both ω0 and α have dimensions of the inverse of time.
Alternate Notation: ωn for ω0, 2ζωn for 2α
See for example, Section 3.5 of Linear Control System Analysis and Design with
MATLAB by D’Azzo, Houpis and Sheldon.



Other types of transfer functions in this system

If the force in the spring is taken as the output, then we would get a transfer
function of the form

T (s) = TLPF(s) =
ω2

0

s2 + 2αs + ω2
0
.

This transfer function is called the transfer function of a second-order lowpass
filter, or LPF.
If the force required to move the mass is taken as the output, then we would get a
transfer function of the form

T (s) = THPF(s) =
s2

s2 + 2αs + ω2
0
.

This transfer function is called the transfer function of a second-order highpass
filter, or HPF.



BPF |T (jω)|

For a second-order BPF,

T (s) =
2αs

s2 + 2αs + ω2
0
.

So

|T (jω)| =

∣∣∣∣∣ 2αjω
2αjω + ω2

0 − ω2

∣∣∣∣∣ =
1√

1 +
(
ω2

0−ω2

2αω

)2
. (12)

Maximum Output: |T (jω)| = 1 when ω = ±ω0.
ω0 is called the centre angular frequency.



Sharpness of Response

Half-power Output: This happens when |T (jω)| = 1/
√

2.
Or,

ω2
0 − ω2

2αω
= ±1 (13)

The two quadratic equations to be solved are

ω2 − 2αω − ω2
0 = 0, (14)

and
ω2 + 2αω − ω2

0 = 0. (15)



Half-power Angular Frequencies

The positive root of Eq. 14, called the upper half-power angular frequency is

ω+ = α +
√
ω2

0 + α2 (16)

The positive root of Eq. 15, called the lower half-power angular frequency is

ω− = −α +
√
ω2

0 + α2 (17)

Note: The negative root of Eq. 14 is −ω−, and the negative root of Eq. 15 is −ω+.
∆ω = ω+ − ω− = 2α is called the half-power bandwidth.
Note that

ω+ω− = ω2
0. (18)



Quality Factor Q

Q =
ω0

∆ω
=
ω0

2α
(19)

is a measure of the selectivity or the sharpness of response. A higher Q makes
the response more selective.
So

2α =
ω0

Q
. (20)

In view of this,

T (s) =
ω0s
Q

s2 + ω0s
Q + ω2

0
.

Whenever we see a quadratic denominator, we use the Q notation, even if the
system is not a bandpass system.



Half-power Angular Frequencies Shown for Q = 1.5



ω+ and ω− in terms of ω0 and Q

ω+ = ω0

(√
1 +

1
4Q2 +

1
2Q

)
. (21)

ω− = ω0

(√
1 +

1
4Q2 −

1
2Q

)
. (22)

Also, remember that ω+ω− = ω2
0, and ω+ − ω− = ω0/Q.

Note that,
ω+

ω0
− ω0

ω+
=

1
Q
, (23)

and
ω−
ω0
− ω0

ω−
= − 1

Q
. (24)



|T (jω)| for Q = 10



|T (jω)| for Q = 0.6



BPF Phase

T (jω) =
2αjω

2αjω + ω2
0 − ω2

=
jωω0/Q

jωω0/Q + ω2
0 − ω2

=
1

1 + jQ
(
ω
ω0
− ω0

ω

) . (25)

Phase angle is

T (jω) = arctan

(
Q
(
ω0

ω
− ω

ω0

))
. (26)

Special values:
• T (j0) = π/2.
• T (jω0) = 0.
• T (j∞) = −π/2.
• T (jω−) = π/4.
• T (jω+) = −π/4.

Phase is important because it is often easier to measure.



BPF magnitude and phase on the same plot



Second-order BPF: More general form

We studied a transfer function of the form

T (s) =
ω0s
Q

s2 + ω0s
Q + ω2

0

that occurs in many applications.
The meanings of the Q and ω0 parameters were understood.
A slightly more general form for the second-order BPF transfer function is

T (s) =
H ω0s

Q

s2 + ω0s
Q + ω2

0
.

Here H is constant gain or loss factor, useful in systems with amplification or extra
losses.



LPF System

Example: MEMS Accelerometer
Input is applied force, output can be the displacement x .
Or, to simplify the mathematics, let the force in the spring, kx , be the output. Then

T (s) =
ω2

0

s2 + ω0s
Q + ω2

0
. (27)

Even here, the symbol Q is used.

LPF |T (jω)| shown for Q = 1.1.



HPF System

Example: MEMS Accelerometer
Input is applied force, output can be the acceleration ẍ .
Or, to simplify the mathematics, let the force acting on the mass, mẍ , be the
output. Then

T (s) =
s2

s2 + ω0s
Q + ω2

0
. (28)

The same symbol Q is used.

LPF |T (jω)| shown for Q = 1.1.



Second-order Transfer Functions: LPF, BPF, and HPF

Now we recall the second-order transfer functions connected with the
spring-mass-dashpot system.
LPF (Lowpass Filter):

TLPF(s) =
ω2

0

s2 + ω0
Q s + ω2

0
. (29)

BPF (Bandpass Filter):

TBPF(s) =
ω0
Q s

s2 + ω0
Q s + ω2

0
. (30)

HPF (Highpass Filter):

THPF(s) =
s2

s2 + ω0
Q s + ω2

0
. (31)

When discussing a particular type of filter, the subscript of T may be omitted.



General Second Order BPF Transfer Function

T (s) =
H ω0

Q s
s2 + ω0

Q s + ω2
0

ω0: Centre angular frequency
Q: Quality factor
H: Gain factor



Second Order BPF Pole Locations
Find zeros of s2 + ω0

Q s + ω2
0.

Case Q > 1
2 (Underdamped)

s1 = − ω0

2Q
+ jω0

√
1− 1

4Q2

s2 = − ω0

2Q
− jω0

√
1− 1

4Q2

Complex conjugate pair of poles. s1s2 = ω2
0.

Case Q = 1
2 (Critically damped)

s1 = s2 = −ω0.

Equal, negative real poles.



Second Order BPF Pole Locations

Case Q < 1
2 (Overdamped)

s1 = − ω0

2Q
+ ω0

√
1

4Q2 − 1

s2 = − ω0

2Q
− ω0

√
1

4Q2 − 1

Unequal negative real poles. s1s2 = ω2
0.



Second Order BPF Pole-zero Diagram (Underdamped)

Underdamped system: Shown for Q > 1
2 . Has two poles and one zero.



Second Order BPF Pole-zero Diagram (Critically Damped)

Critically damped system: Shown for Q = 1
2 . Here, s1 = s2 = −ω0. Has two poles

and one zero.



Second Order BPF Pole-zero Diagram (Overdamped)

Overdamped system: Shown for Q < 1
2 . Has two poles and one zero.



Second Order LPF and HPF

LPF:

TLPF(s) =
ω2

0

s2 + ω0
Q s + ω2

0
. (32)

HPF:

THPF(s) =
s2

s2 + ω0
Q s + ω2

0
. (33)



Case of Peaking



Case of No Peaking



General Second Order LPF Transfer Function

T (s) =
Hω2

0

s2 + ω0
Q s + ω2

0

ω0: Centre angular frequency
Q: Quality factor
H: Gain factor



Second Order LPF Pole-zero Diagram (Underdamped)

Shown for Q > 1
2 . Has two poles and no zero.



General Second Order HPF Transfer Function

T (s) =
Hs2

s2 + ω0
Q s + ω2

0

ω0: Centre angular frequency
Q: Quality factor
H: Gain factor



Second Order HPF Pole-zero Diagram (Underdamped)

Shown for Q > 1
2 . Has two poles and two zeros.



T (jω) Phase



Observations

Note that THPF(jω)/TBPF(jω) = jQω/ω0, and TLPF(jω)/TBPF(jω) = −jQω0/ω.
So for positive ω, the HPF phase leads the BPF phase by π/2, while the LPF
phase lags the BPF phase by π/2, as the plot shows.
In the same way, for the first-order case, HPF phase leads the LPF phase by π/2.
Points to note:
• Unlike the magnitude plots, the phase plots are monotonic.
• HPF, BPF, and LPF phase plots are very simply related to one another.
• Phase is often easier to measure.



Notation and Terminology

Note that even though the second order LPF and HPF are not really bandpass
filters, we still use the notations ω0 and Q.
The meanings are different, even though the expressions are the same.


