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Spring-Dashpot System

bẋ + kx = F (1)

Study of two possible systems:
• Input is F , output is x , or to have the same dimension, Fspring = kx , tension

force in the spring.
• Input is F , output is ẋ , or to have the same dimension, Fdashpot = bẋ , tension

force in the dashpot.



Differential Equation

Symbols introduced for conciseness:
Φ = Fspring = kx ,
Ψ = Fdashpot = bẋ = b

k kẋ = b
k Φ̇.

In terms of Φ, the ODE bẋ + kx = F can be expressed as

b
k

Φ̇ + Φ = F .

Or,
dΦ

dt
+ κΦ = κF . (2)

Here κ = k/b has the dimension of the inverse of time.



Other names for κ

κ = k/b.
Depending on the situation, it can act in different ways.
• Decay constant: α
• Angular velocity: ω0



Solution

dΦ

dt
+ κΦ = κF .

Multiply both sides by eκt . Then the left hand becomes the derivative of eκt Φ.

d
(

eκt Φ
)

dt
= κFeκt .

Now we integrate both sides from 0 to t .

eκt Φ(t)− Φ(0) = κ

∫ t

0
F (τ)eκτ dτ.

Rearranging terms we get

Φ(t) = Φ(0)e−κt + e−κtκ

∫ t

0
F (τ)eκτ dτ. (3)



Solution for F (t) = 0

Case F (t) = 0:

Φ(t) = Φ(0)e−κt . (4)

Here we have exponential decay of the solution.
This behaviour can be observed with a light door that has a spring-damper
attached to it.
It is to be noted that in this case the tension in the dashpot is

Ψ(t) =
1
κ

dΦ

dt
= −Φ(0)e−κt = −Φ(t). (5)

The sum of the tensions in the spring and the dashpot is zero as it should be.
The dashpot is in compression during the return stretched spring to its rest
position.



Solution for F (t) = F0est

The form est is special because its derivative is s times itself.
Case F (t) = F0est :

Φ(t) = Φ(0)e−κt + e−κtκ

∫ t

0
F (τ)eκτ dτ

= Φ(0)e−κt + e−κtκ

∫ t

0
F0esτeκτ dτ

= Φ(0)e−κt + F0e−κt
(

e(s+κ)t − 1
) κ

s + κ

=

(
Φ(0)− F0

κ

s + κ

)
e−κt +

κ

s + κ
F0est .

The solution has two parts.



Transient and Steady-state Components

The first part,

Φtransient(t) =

(
Φ(0)− F0

κ

s + κ

)
e−κt ,

represents a transient decay. This is also called the natural response.
The second part is

Φsteady−state(t) =
κ

s + κ
F0est =

κ

s + κ
F (t) = T (s)F (t).

This part is often called the forced response. Here, the transfer function
T (s) = κ/(s + κ).
T (s) can be other functions of s for other kinds of systems.



Solution for F (t) = F0 cos(ωt)

Sinusoidal excitation: F (t) = F0 cos(ωt)

Φ(t) = Φ(0)e−κt + e−κtκ

∫ t

0
F (τ)eκτ dτ

= Φ(0)e−κt + e−κtκ

∫ t

0
F0 cos(ωτ)eκτ dτ

=

(
Φ(0)− F0

1
1 + (ω/κ)2

)
e−κt + F0

cos(ωt) + (ω/κ) sin(ωt)
1 + (ω/κ)2 .

This solution was obtained by directly using the formula for
∫

cos(ωτ)eκτ dτ .
But it could also have been obtained by using the result for F (t) = F0est .



Solution obtained by superposition

F (t) = F0 cos(ωt) =
1
2

F0ejωt +
1
2

F0e−jωt

The steady-state solution for input 1
2F0ejωt is κ

jω+κ
1
2F0ejωt = 1

2F0
cos(ωt)+j sin(ωt)

1+jω/κ .

The steady-state solution for input 1
2F0e−jωt is κ

−jω+κ
1
2F0e−jωt = 1

2F0
cos(ωt)−j sin(ωt)

1−jω/κ .
Adding these solutions we obtain

F0
cos(ωt) + (ω/κ) sin(ωt)

1 + (ω/κ)2

after simplification.
The form ω/κ suggests that κ plays the role of a cut-off angular frequency here.
Let κ = ω0 = 2πf0.
f0 is an important frequency for this system.
In terms of problem parameters, f0 = k/(2πb).



Plots using MATLAB

Now the expression for the output for simusoidal excitation is converted to a
MATLAB function.
Then it is used to generate some plots.



Programme Listing: Part 1 of sd.m

function sd(f, f0, tMax, nPts, F0, Phi0)
omega = 2 * pi * f;
omega0 = 2 * pi * f0;
tArr = linspace(0, tMax, nPts);
cArr = cos(omega * tArr);
sArr = sin(omega * tArr);
eArr = exp(-omega * tArr);
v = f / f0;
den = 1 + v * v;
cFac = F0 / den;
sFac = v * cFac;
eFac = Phi0 - cFac;
PhiTrans = eFac * eArr;
PhiSS = cFac * cArr + sFac * sArr;
PhiArr = PhiTrans + PhiSS;



Programme Listing: Part 2 of sd.m

PsiTrans = -PhiTrans;
PsiSS = v * v * cFac * cArr - sFac * sArr;
PsiArr = PsiTrans + PsiSS;
FArr = F0 * cArr;
plot(tArr, PhiArr, ’linewidth’, 2, ...

tArr, PhiSS, ’linewidth’, 2, ’--’, ...
tArr, PsiArr, ’linewidth’, 2, ...
tArr, PsiSS, ’linewidth’, 2, ’--’, ...
tArr, FArr, ’linewidth’, 2);

legend(’\Phi’, ’\Phi_{SS}’, ’\Psi’, ’\Psi_{SS}’, ’F’);
xlabel(’t (in s)’);
ylabel(’Force (in N)’);
grid on;



Output for f = 5 Hz, f0 = 10 Hz.

octave:1> sd(5, 10, 0.4, 1001, 1, 0)



Observations

• As the transients decay, the responses Φ(t) and Ψ(t), both are very close to
sinusoidal.
• The amplitude of Φ(t) is larger than that of Ψ(t).
• This is because f < f0.
• The phase of Φ(t) lags, while that of Ψ(t) leads the phase of F (t).



Output for f = 10 Hz, f0 = 10 Hz.

octave:1> sd(10, 10, 0.2, 1001, 1, 0)



Observations

• As the transients decay, the responses Φ(t) and Ψ(t), both are very close to
sinusoidal.
• The amplitude of Φ(t) is same as that of Ψ(t).
• The amplitudes of Φ(t) and Ψ(t) here are 1/

√
2 the amplitude of F (t).

• This is because f = f0.
• The phase of Φ(t) lags, while that of Ψ(t) leads the phase of F (t).
• The phases are both π/4 or 45 degree in magnitude.



Output for f = 20 Hz, f0 = 10 Hz.

octave:1> sd(20, 10, 0.2, 1001, 1, 0)



Observations

• As the transients decay, the responses Φ(t) and Ψ(t), both are very close to
sinusoidal.
• The amplitude of Φ(t) is smaller than that of Ψ(t).
• This is because f > f0.
• The phase of Φ(t) lags, while that of Ψ(t) leads the phase of F (t).



Transient Response
To look at the transient respose, we make F0 = 0 , Φ0 = 1.

octave:1> sd(5, 10, 0.4, 1001, 0, 1)

We note that the transient part of Ψ(t) is negative of the transient part of Φ(t), as it
should be.


