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1 The Dehmelt Approximation

We begin with the Mathieu equation:

z′′ + [a− 2q cos(2ξ)] z = 0 (1)

In this discussion, prime (′) denotes differentiation with respect to ξ, the normalized time. There is
no explicit mention of time here. For small values of a and q, the evolution of z(ξ) looks as in the
following figure in which z(0) = 5, z′(0) = 1, q = 0.2, a = −0.015.

In the figure above, z(ξ) looks like the sum of a slowly oscillating quantity with a large fixed
amplitude and rapidly oscillating quantity of a small modulated amplitude.

Even though we have discussed numerical techniques for calculating the solution and other
quantities associated with it, for small values of a and q, there is an approximation due to Dehmelt
which provides simple estimates for both the slow and the fast components of the solution. Dehmelt’s
approximation also provides a great deal of insight on the behaviour of physical systems described
by the Mathieu equation. A crude derivation of the Dehmelt approximation will now be given. We
write,

z = Z + ζ, (2)

where Z is a slowly varying quantity and ζ is a rapidly varying quantity. We assume that ζ � Z,
but ζ ′ � Z ′ and ζ ′′ � Z ′′. Averaging over a cycle of ζ would make ζ and its derivatives 0, but
leave Z and its derivatives intact. Substituting z as Z + ζ in Eq.(1) we get

Z ′′ + ζ ′′ + [a− 2q cos(2ξ)] (Z + ζ) = 0 (3)
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First we consider the significant rapidly oscillating parts of Eq.(3): They are ζ ′′, and −2q cos(2ξ)Z.
The part [a− 2q cos(2ξ)] ζ, while rapidly oscillating, is not significant since both ζ, and a−2q cos(2ξ)
are assumed to be small. Thus we have

ζ ′′ − 2q cos(2ξ)Z = 0 (4)

Since Z is assumed to be changing slowly, in Eq.(4) it may be considered a constant. Then after
two integrations, we have the rapidly oscillating ζ in terms of Z as:

ζ = −q
2

cos(2ξ)Z (5)

Substituting this form of ζ in Eq.(3) we get

Z ′′ + aZ − aq

2
cos(2ξ)Z + q2 cos2(2ξ)Z = 0 (6)

Note that the ζ ′′ term has cancelled the −2q cos(2ξ)Z term. Averaging Eq.(6) over a cycle of ζ
and noting that the average of a cosine square is 1/2, and that of a cosine is 0, we get Dehmelt’s
equation for the evolution of Z:

Z ′′ +

(
a+

q2

2

)
Z = 0 (7)

This solution of this equation is of the form:

Z(ξ) = Z(0) cos (Ωsξ) +
Z ′(0)

Ωs

sin (Ωsξ) , (8)

where,

Ωs =

√
a+

q2

2
, (9)

is Dehmelt’s slow angular frequency, and Z(0) and Z ′(0) are initial value constants which need to
be determined from the given values of z(0) and z′(0). Once Z(ξ) is determined from Eq.(8), ζ can
be computed using Eq.(5).

Substituting the expression for ζ from Eq.(5) in Eq.(2) we get z in terms of Z.

z =
[
1 − q

2
cos(2ξ)

]
Z (10)

To get Z(0) from z(0) we use Eq.(10) with ξ = 0:

Z(0) =
z(0)

1 − q
2

(11)

It is not clear how legitimate differentiating approximations such as Dehmelt’s is. However, if we
ignore such concerns and differentiate Eq.(10) with respect to ξ we get,

z′ =
[
1 − q

2
cos(2ξ)

]
Z ′ + q sin(2ξ)Z. (12)

Then setting ξ = 0 in Eq.(12) we can express Z ′(0) as

Z ′(0) =
z′(0)

1 − q
2

(13)

Now we should look at the web page, ./compareDehmelt.html, which compares Dehmelt’s
approximation with the actual numerical solution.

In a physical problem, in which f is the drive frequency, Ωsf/2 would be Dehmelt’s approxima-
tion to the secular frequency, which is the frequency of the slow oscillations.
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