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1 The Dehmelt Approximation
We begin with the Mathieu equation:
2" +la—2qcos(28)]z =0 (1)

In this discussion, prime (') denotes differentiation with respect to £, the normalized time. There is
no explicit mention of time here. For small values of a and ¢, the evolution of z(§) looks as in the
following figure in which z(0) =5, 2/(0) = 1, ¢ = 0.2, a = —0.015.
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In the figure above, z(£) looks like the sum of a slowly oscillating quantity with a large fixed
amplitude and rapidly oscillating quantity of a small modulated amplitude.

Even though we have discussed numerical techniques for calculating the solution and other
quantities associated with it, for small values of a and ¢, there is an approximation due to Dehmelt
which provides simple estimates for both the slow and the fast components of the solution. Dehmelt’s
approximation also provides a great deal of insight on the behaviour of physical systems described
by the Mathieu equation. A crude derivation of the Dehmelt approximation will now be given. We

write,
z=7+, (2)

where Z is a slowly varying quantity and ( is a rapidly varying quantity. We assume that ( < Z,
but ¢’ > Z’ and (" > Z". Averaging over a cycle of ( would make ¢ and its derivatives 0, but
leave Z and its derivatives intact. Substituting z as Z + ¢ in Eq.(1]) we get

Z" + "+ [a—2qcos(2)] (Z+¢) =0 (3)



First we consider the significant rapidly oscillating parts of Eq.(3): They are ¢”, and —2¢ cos(2£)Z.
The part [a — 2q cos(2£)] ¢, while rapidly oscillating, is not significant since both ¢, and a—2q cos(2¢)
are assumed to be small. Thus we have

(" —2qcos(2§)Z =0 (4)
Since Z is assumed to be changing slowly, in Eq. it may be considered a constant. Then after

(5)

two integrations, we have the rapidly oscillating  in terms of Z as:
(= —g cos(28)Z

Substituting this form of ¢ in Eq. we get
7" v az — Y cos(26)Z + ¢* cos*(26) Z = 0 (6)

Note that the ¢” term has cancelled the —2¢gcos(2£)Z term. Averaging Eq.@ over a cycle of ¢
and noting that the average of a cosine square is 1/2, and that of a cosine is 0, we get Dehmelt’s

equation for the evolution of Z:
2
Z”+<a—|—%>Z:O (7)
This solution of this equation is of the form:
Z'(0
2(€) = 2(0)cos(2.6) + 2D sin (0,9). ®)
(9)

where,
/ e
Qs = a0
a-+ 5

is Dehmelt’s slow angular frequency, and Z(0) and Z'(0) are initial value constants which need to
be determined from the given values of z(0) and 2’(0). Once Z(&) is determined from Eq.(§)), ¢ can

be computed using Eq..
Substituting the expression for ( from Eq. in Eq. we get z in terms of Z.
2= [1 - gcos(Zf)] Z (10)
To get Z(0) from z(0) we use Eq.(10) with £ = 0:
2(0)
20)= 2 (1)
2

It is not clear how legitimate differentiating approximations such as Dehmelt’s is. However, if we

ignore such concerns and differentiate Eq. with respect to & we get,
o = [1 14 cos(2§)] 7'+ qsin(26) 2. (12)

Then setting £ = 0 in Eq.(12)) we can express Z'(0) as
Z(0)
Z'(0) = 14 (13)
2
Now we should look at the web page, ./compareDehmelt.html, which compares Dehmelt’s

approximation with the actual numerical solution.
In a physical problem, in which f is the drive frequency, Q,f/2 would be Dehmelt’s approxima-

tion to the secular frequency, which is the frequency of the slow oscillations.
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