The Dehmelt Approximation

February 4, 2020

1 The Dehmelt Approximation

We begin with the Mathieu equation:

$$
\begin{equation*}
z^{\prime \prime}+[a-2 q \cos (2 \xi)] z=0 \tag{1}
\end{equation*}
$$

In this discussion, prime $\left({ }^{\prime}\right)$ denotes differentiation with respect to ξ, the normalized time. There is no explicit mention of time here. For small values of a and q, the evolution of $z(\xi)$ looks as in the following figure in which $z(0)=5, z^{\prime}(0)=1, q=0.2, a=-0.015$.

In the figure above, $z(\xi)$ looks like the sum of a slowly oscillating quantity with a large fixed amplitude and rapidly oscillating quantity of a small modulated amplitude.

Even though we have discussed numerical techniques for calculating the solution and other quantities associated with it, for small values of a and q, there is an approximation due to Dehmelt which provides simple estimates for both the slow and the fast components of the solution. Dehmelt's approximation also provides a great deal of insight on the behaviour of physical systems described by the Mathieu equation. A crude derivation of the Dehmelt approximation will now be given. We write,

$$
\begin{equation*}
z=Z+\zeta \tag{2}
\end{equation*}
$$

where Z is a slowly varying quantity and ζ is a rapidly varying quantity. We assume that $\zeta \ll Z$, but $\zeta^{\prime} \gg Z^{\prime}$ and $\zeta^{\prime \prime} \gg Z^{\prime \prime}$. Averaging over a cycle of ζ would make ζ and its derivatives 0 , but leave Z and its derivatives intact. Substituting z as $Z+\zeta$ in Eq.(1) we get

$$
\begin{equation*}
Z^{\prime \prime}+\zeta^{\prime \prime}+[a-2 q \cos (2 \xi)](Z+\zeta)=0 \tag{3}
\end{equation*}
$$

First we consider the significant rapidly oscillating parts of Eq. (3): They are $\zeta^{\prime \prime}$, and $-2 q \cos (2 \xi) Z$. The part $[a-2 q \cos (2 \xi)] \zeta$, while rapidly oscillating, is not significant since both ζ, and $a-2 q \cos (2 \xi)$ are assumed to be small. Thus we have

$$
\begin{equation*}
\zeta^{\prime \prime}-2 q \cos (2 \xi) Z=0 \tag{4}
\end{equation*}
$$

Since Z is assumed to be changing slowly, in Eq. (4) it may be considered a constant. Then after two integrations, we have the rapidly oscillating ζ in terms of Z as:

$$
\begin{equation*}
\zeta=-\frac{q}{2} \cos (2 \xi) Z \tag{5}
\end{equation*}
$$

Substituting this form of ζ in Eq.(3) we get

$$
\begin{equation*}
Z^{\prime \prime}+a Z-\frac{a q}{2} \cos (2 \xi) Z+q^{2} \cos ^{2}(2 \xi) Z=0 \tag{6}
\end{equation*}
$$

Note that the $\zeta^{\prime \prime}$ term has cancelled the $-2 q \cos (2 \xi) Z$ term. Averaging Eq. (6) over a cycle of ζ and noting that the average of a cosine square is $1 / 2$, and that of a cosine is 0 , we get Dehmelt's equation for the evolution of Z :

$$
\begin{equation*}
Z^{\prime \prime}+\left(a+\frac{q^{2}}{2}\right) Z=0 \tag{7}
\end{equation*}
$$

This solution of this equation is of the form:

$$
\begin{equation*}
Z(\xi)=Z(0) \cos \left(\Omega_{s} \xi\right)+\frac{Z^{\prime}(0)}{\Omega_{s}} \sin \left(\Omega_{s} \xi\right) \tag{8}
\end{equation*}
$$

where,

$$
\begin{equation*}
\Omega_{s}=\sqrt{a+\frac{q^{2}}{2}} \tag{9}
\end{equation*}
$$

is Dehmelt's slow angular frequency, and $Z(0)$ and $Z^{\prime}(0)$ are initial value constants which need to be determined from the given values of $z(0)$ and $z^{\prime}(0)$. Once $Z(\xi)$ is determined from Eq. (8), ζ can be computed using Eq. (5).

Substituting the expression for ζ from Eq.(5) in Eq.(2) we get z in terms of Z.

$$
\begin{equation*}
z=\left[1-\frac{q}{2} \cos (2 \xi)\right] Z \tag{10}
\end{equation*}
$$

To get $Z(0)$ from $z(0)$ we use Eq. 10 with $\xi=0$:

$$
\begin{equation*}
Z(0)=\frac{z(0)}{1-\frac{q}{2}} \tag{11}
\end{equation*}
$$

It is not clear how legitimate differentiating approximations such as Dehmelt's is. However, if we ignore such concerns and differentiate Eq. (10) with respect to ξ we get,

$$
\begin{equation*}
z^{\prime}=\left[1-\frac{q}{2} \cos (2 \xi)\right] Z^{\prime}+q \sin (2 \xi) Z . \tag{12}
\end{equation*}
$$

Then setting $\xi=0$ in Eq. 12 we can express $Z^{\prime}(0)$ as

$$
\begin{equation*}
Z^{\prime}(0)=\frac{z^{\prime}(0)}{1-\frac{q}{2}} \tag{13}
\end{equation*}
$$

Now we should look at the web page, ./compareDehmelt.html, which compares Dehmelt's approximation with the actual numerical solution.

In a physical problem, in which f is the drive frequency, $\Omega_{s} f / 2$ would be Dehmelt's approximation to the secular frequency, which is the frequency of the slow oscillations.

