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Filters

• Used for selecting some frequencies and rejecting others.
• Some common uses:

• Reducing noise
• Frequency division multiplexing
• Enhancing one harmonic of a periodic signal

• Our plan:
1 Study simple filters or building blocks
2 Combine these building blocks to make more complex filters



Example 1: RCCR BPF

Recall from Notes 1 that
A = sR1C1 + 1 + R1

R2
+ R1C1

R2C2
+ 1

sR2C2
.

So

T (s) =
1
A

=

1
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s
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+
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Example 1: RCCR BPF T (s) in Standard Form

Comparing with the standard form we see that

ω0 =
1√

R1R2C1C2

Q =

√
R1C1
R2C2

1 + R1
R2

+ R1C1
R2C2

H =
1

1 + R1
R2

+ R1C1
R2C2



Example 1: Special Case

If R1 = R2 = R, and C1 = C2 = C, we have

ω0 =
1

RC

Q =
1
3

H =
1
3

Not very selective at all!



Example 2: RCRC LPF

Compute the ABCD matrix of the network to show that
A = s2R1R2C1C2 + (R1C1 + R1C2 + R2C2)s + 1.
So

T (s) =
1
A

=

1
R1R2C1C2

s2 + R1C1+R1C2+R2C2
R1R2C1C2

s + 1
R1R2C1C2



Example 2: RCRC LPF T (s) in Standard Form

Comparing with the standard form we see that

ω0 =
1√

R1R2C1C2

Q =

√
R1R2C1C2

R1C1 + R1C2 + R2C2

H = 1



Example 2: Special Case

If R1 = R2 = R, and C1 = C2 = C, we have

ω0 =
1

RC

Q =
1
3

H = 1



Example 3: BPF from the Parallel RLC Network

T (s) =
s

RC

s2 + s
RC + 1

LC

Comparing with the standard form we see that ω0 = 1√
LC

, Q = R√
L/C

, and H = 1.

Note that the expression for Q here differs from the expression that was derived
for the BPF based on the series RLC circuit.
Here Q is proportional to R, there it was inversely proportional to R.



Example 4: LPF from the Parallel RLC Network

T (s) =
1

LC

s2 + s
RC + 1

LC

Comparing with the standard form we see that ω0 = 1√
LC

, Q = R√
L/C

, and H = 1.

This circuit is used for impedance matching in industrial applications.



Example 5: HPF from the Parallel RLC Network

T (s) =
s2

s2 + s
RC + 1

LC

Comparing with the standard form we see that ω0 = 1√
LC

, Q = R√
L/C

, and H = 1.

This circuit is also used for impedance matching in industrial applications.



Why RC Filters?

• Inductors are practical at high frequencies.
• At audio frequencies, inductors tend to be bulkier and more expensive

compared to resistors and capacitors.
• So there is a desire to make audio frequency filters using resistors and

capacitors only.
• But, passive RC second order networks seem to have low Q.
• How can we get more Q?
• The answer is the active filter.
• Active filters use amplification to compensate for the losses.



Q-Enhancement using Positive Feedback

Consider a second order BPF whose transfer function is

T0(s) =
H0

ω00
Q0

s

s2 + ω00
Q0

s + ω2
00

The extra 0s in the subscripts are there to indicate original parameters.
Now let us use positive feedback as shown.

What is the new transfer function?



New Transfer Function

Vo = T0(s)(Vi + αVo)
Vo(1− αT0(s)) = T0(s)Vi

T (s) =
Vo

Vi
=

T0(s)

1− αT0(s)

Substitution of the expression for T0(s) and simplification gives us

T (s) =
H0

ω00
Q0

s

s2 + (1− αH0)ω00
Q0

s + ω2
00



New Parameters

Comparing with the standard form

T (s) =
H ω0

Q s
s2 + ω0

Q s + ω2
0

we see the following.
ω0 = ω00. Centre angular frequency does NOT change.

Q =
Q0

1− αH0

H =
H0

1− αH0

Both Q and H are enhanced by the factor 1
1−αH0

.
We need to be careful. If αH0 exceeds 1, the circuit will oscillate.



Q-Enhancement: Practical Circuits

The positive feedback scheme that was described can be implemented using two
operational amplifiers.
In practice, only one operational amplifier may be enough.
Not only second order BPF, even second order LPF and HPF circuits can have
their Q enhanced using amplifiers.
The next circuit is a practical LPF circuit.



The Sallen-Key Lowpass Filter

DC Gain is K = 1 + Rb
Ra

.



The Sallen-Key Lowpass Filter: Analysis

We start with the output voltage Vo.
As we have a non-inverting amplifier of gain K = 1 + Rb/Ra, the voltage at the
non-inverting input of the amplifier is Vo/K .
I1 = sC Vo

K .
Vm = Vo

K + I1R = (1 + sRC)Vo
K .

I2 = sC(Vm − Vo) = sC(1− K + sRC)Vo
K .

I = I1 + I2 = sC(2− K + sRC)Vo
K .

Vi = Vm + RI =
[
1 + (3− K )sRC + (sRC)2] Vo

K .



The Sallen-Key LPF: Transfer Function

So

T (s) = Vo
Vi

= K
(sRC)2+(3−K )sRC+1 =

K 1
(RC)2

s2+ 3−K
RC s+ 1

(RC)2

Comparing with the standard forms we see that we have a second order LPF with
ω0 = 1

RC ,
Q = 1

3−K ,
and
H = K = 1 + Rb/Ra.



The Sallen-Key LPF: Gain Reduction

The circuit just described has a DC gain of K = 1 + Rb/Ra which exceeds 1.
In many applications, we want a DC gain Hdesired, which is 1 or less.
This could be achieved by using a voltage divider of division ratio a = Hdesired/K ,
followed by a unity gain buffer.
But this can also be achieved by splitting the input resistor into two parts.



Split Input Resistor

We require that the voltage division ratio should be

Rshu

Rser + Rshu
= a,

and the parallel combination of Rshu and Rser should be R. So

RserRshu

Rser + Rshu
= R.

Dividing the second equation by the first, we get
Rser = R/a.
Then solving for Rshu we get Rshu = R/(1− a).



The Sallen-Key LPF: Practical Circuit



The Sallen-Key LPF: Design

Specifications: f0, Q, Hdesired, and C
Compute R = 1

2πf0C

Compute K = 3− 1
Q

Rb/Ra = K −1. Usually one sets Ra = 10 kΩ, and then computes Rb = (K −1)Ra.
Compute a = Hdesired/K .
Then compute Rser = R/a and Rshu = R/(1− a).



Trimmer Potentiometers

Filter design requires nonstandard resistance values. They are usually
implemented using trimmer potentiometers. The picture shows trimmers in use.



The Sallen-Key Highpass Filter

T (s) =
Ks2

s2 + ω0
Q s + ω2

0

K = 1 + Rb
Ra

, ω0 = 1
RC , Q = 1

3−K .
Gain reduction requires a separate voltage divider followed by unity gain buffer.
Splitting of the input capacitor is not practical.



The First Order RC Lowpass Filter

T (s) =
ω0

s + ω0

ω0 =
1

RC



The First Order CR Highpass Filter

T (s) =
s

s + ω0

ω0 =
1

RC



The Inverting Integrator

T (s) = −s0

s

s0 =
1

RC
Remember to put a high resistance in parallel with the capacitor if the integrator is
used without any other negative feedback.



Example of Impedance Matching

At what frequency is Zi real?
What is its value at that frequency?

Zi(s) = sL +
R

1 + sRC

Zi(jω) = jωL +
R

1 + jωRC
= jωL +

R(1− jωRC)

1 + (ωRC)2



Impedance Matching Analysis

For Zi(jω) to be real, we require

ωL =
ωR2C

1 + (ωRC)2

(ωRC)2 + 1 =
R2C

L



Impedance Matching Results

ω =
1√
LC

√
1− L/C

R2

At this ω, Zi is

L/C
R

This value may be small enough for the generator to deliver more power to the
load.



Star to Delta Transformation

Question: When do the two networks shown look identical from the outside?
Answer: When Z12 = Z1 + Z2 + Z1Z2/Z3, etc.



The Twin-T Notch Filter

At what frequency is the output zero?



Twin-T Analysis

Z1 = 2R1 + sR2
1C1

Z2 =
2

sC2
+

1
s2R2C2

2

For no transmission, we need Z1 = −Z2.



Twin-T Analysis

This requires

ω2
0 =

2
R2

1C1C2

and

ω2
0 =

1
2R1R2C2

2



Twin-T Analysis

Or,

R1C1 = 4R2C2

One way of achieving this is to set R1 = R, R2 = R/2, C1 = 2C, and C2 = C, so
that

ω0 =
1

RC



Twin-T Filter: Uses

• At frequency f0 = 1/(2πRC), there is no transmission.
• Can be used as a notch filter.
• If used in the negative feedback path, can be part of a narrow band filter.
• This is a third order filter, not part of the mainstream.
• Much used in various forms.



Twin-T Filter: SPICE Code

Twin T Notch filter

*****************************
VIN 1 0 AC 1
R1A 1 2 10k
R1B 2 4 10k
R2 3 0 5k
C1 2 0 20n
C2A 1 3 10n
C2B 3 4 10n
.AC LIN 1000 0.2k 3.0k

.CONTROL
run
plot vp(4)
plot vm(4)
.ENDCONTROL

.END



Twin-T Filter: Magnitude Plot



The Single Amplifier Biquad (SAB)

• This circuit acts as a bandpass filter.
• Developed by Delyiannis and Friend.



SAB Analysis

Z1 = 2R1 +
1

sC
=

1 + 2sR1C
sC

Z2 =
2

sC
+

1
s2C2R1

=
1 + 2sR1C

s2R1C2



SAB Transfer Function

Zf = Z2||R2 =
(1 + 2sR1C)R2

1 + 2sR1C + s2R1R2C2

T (s) = −Zf

Z1
=

−sR2C
1 + 2sR1C + s2R1R2C2 =

− 1
R1C s

s2 + 2
R2C s + 1

R1R2C2



SAB Parameters

We see that the SAB is a BPF.
Comparing with the standard form we get

ω0 =
1√

R1R2C

Q =
1
2

√
R2

R1

H = − R2

2R1
= −2Q2

Note that R2/R1 = 4Q2.



SAB With Gain Reduction



SAB Design

Specification: f0, Q, Hdesired, and C are specified.
Hdesired should be negative.
Steps:

1 R2 = Q/(πf0C).
2 R1 = R2/(4Q2).
3 a = Hdesired/(−2Q2).
4 R1,ser = R1/a.
5 R1,shu = R1/(1− a).



SAB Disadvantage

• R2/R1 = 4Q2 can be quite large.
• Hard to get such high ratio inside integrated circuits.
• The remedy is to first design a low Q SAB, and then enhance its Q using

positive feedback.



Q-Enhanced SAB

Positive feedback is used.

k =
Ra

Ra + Rb



Q-Enhanced SAB Analysis

Vi − kVo

Z1
=

kVo − Vo

Zf

Vi − kVo =
kVo − Vo

Zf/Z1
=

kVo − Vo

−T0(s)
=

(1− k)Vo

T0(s)

where, T0(s) = −Zf/Z1 is the transfer function of the original SAB.

Vi = kVo +
(1− k)Vo

T0(s)
= Vo

1− k + kT0(s)

T0(s)



Q-Enhanced SAB Transfer Function

So the transfer function of the Q-Enhanced SAB is

T (s) =
Vo

Vi
=

T0(s)

1− k + kT0(s)
=

1
1−k T0(s)

1 + k
1−k T0(s)

Let
α =

k
1− k

so that

k =
α

1 + α

and

1
1− k

= 1 + α



Q-Enhanced SAB Transfer Function

So we have
T (s) =

(1 + α)T0(s)

1 + αT0(s)

Let us rewrite the transfer function of the original SAB, T0(s) as

T0(s) =
−2Q2

0
ω0
Q0

s

s2 + ω0
Q0

s + ω2
0

the original Q being rewritten as Q0 and H being written as −2Q2
0 . Substitution

and simplification results in

T (s) =
−2(1 + α)Q2

0
ω0
Q0

s

s2 + (1− 2αQ2
0) ω0

Q0
s + ω2

0



Q-Enhanced SAB Parameters

We see that for the Q-Enhanced SAB, ω0 is unchanged,

Q =
Q0

1− 2αQ2
0

and

H =
−2Q2

0(1 + α)

1− 2αQ2
0



Selecting Q0 and Computing α

It is recommended to use
Q0 ≈ 1.5

Compute R2 = Q0/(πf0C), and R1 = R2/(4Q2
0).

Next, compute α using

α =
1−Q0/Q

2Q2
0

Then compute k using

k =
α

1 + α

We have Rb/Ra = 1/k − 1.



Gain Reduction

Compute H =
−2Q2

0(1 + α)

1− 2αQ2
0

.

Then compute

a = Hdesired/H

Then compute

R1,ser = R1/a

and

R1,shu = R1/(1− a)

The final circuit is on the next slide.



Q-Enhanced SAB with Gain Reduction



An All-Pass Filter

Used as a phase shifter.
One could make this from the difference of the transfer functions of the RC LPF
and the CR HPF after suitable buffering and subtraction, but this circuit uses only
one operational amplifier.



All-Pass Filter Analysis

The voltage at the input pins is (Vi + Vo)/2.
So

Vi − Vi+Vo
2

R
= sC

Vi + Vo

2
Or,

Vi − Vo

2
= sRC

Vi + Vo

2



All-Pass Filter Transfer Function

Or,

Vi(1− sRC) = Vo(1 + sRC)

So,

T (s) =
Vo

Vi
=

1− sRC
1 + sRC

=
s0 − s
s0 + s

where s0 = 1
RC .



All-Pass Filter as a Phase Shifter

We have

|T (jω)| = 1

and

∠T (jω) = −2 arctan(ω/s0)

As R changes from 0 to∞, the phase lag changes from 0 to π.


