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Artificial Inductors

• Classical filter design requires resistors, capacitors, and inductors.
• Inductors required for audio frequency filters are in the millihenry or higher

ranges.
• Such large inductors are expensive, with high losses and nonlinearities.
• Using active circuits, it is possible to synthesize large low-loss inductors for

filter work.
• Such artificial inductors have transformed telephony, and high fidelity audio

design.
• However, in high power applications, they cannot replace physical inductors.



The Miller Effect

• Consider an impedance connected between the output and the input.
• May be a stray capacitance, or may be connected by design
• Usually harmful and degrades high frequency gain
• But here it is going to be used for realizing high quality grounded inductors.



CE Amplifier



CE Amplifier: Stray Capacitance



Miller Effect: Block Diagram

Input Current: Ii

Ii =
Vi − Vo

Z (s)
=

Vi − ViT (s)

Z (s)
= Vi

1− T (s)

Z (s)

Input Impedance:

Zi =
Vi

Ii
=

Z (s)

1− T (s)

If the input of the T (s) block is not an open circuit, then that input impedance
would be in parallel with Zi .
For now, we focus on Zi .



Miller Effect: Inverting Amplifier

Input Impedance:

Zi =
Z (s)

1− T (s)

Inverting Amplifier like BJT CE Amplifier: T (s) = −K

Zi =
Z (s)

1 + K
If K is large, |Zi | � |Z (s)|, which can load the input a lot. If K = 50, Zi = Z (s)/51.
A 2 pF stray capacitance will look like a 102 pF load to the input.



Miller Effect: Non-inverting Amplifier

Input Impedance:

Zi =
Z (s)

1− T (s)

Non-inverting Amplifier: T (s) = +K

Zi = − Z (s)

K − 1
If K is large, we still have|Zi | � |Z (s)|, which can load the input a lot. In addition,
due to the negative sign, stray capacitances look like inductive loads to the input.
This may lead to various circuit instabilities.



Miller Effect: Making a Grounded Inductor

Zi =
Z (s)

1− T (s)

Let Z (s) = R, and the desired input impedance be purely inductive, that is
Zi = sL. Then we require

T (s) = 1− Z (s)

Zi
= 1− R

sL
= 1− 1

τs

where τ = L/R.



What is 1− 1/(τs)?

We recall that − 1
τs

is the transfer function of an inverting integrator, where
τ = RiCi is the time constant of the integrator.

So the desired transfer function is the transfer function of an inverting integrator
plus 1. If τ is the time constant of the inverting integrator, then

L = Rτ



Realizing T (s) Using Adder

We still need to connect a unity follower buffer at the input.
Needs three operational amplifiers including the unity gain buffer.



Realizing T (s): Modifying the Integrator

Here
Vi − Vi/H

R3
= (Vi/H − Vo)sC2

Or,

Vi − Vi/H
sR3C2

= Vi/H − Vo



Realizing T (s): Modifying the Integrator

Or,

Vo = Vi/H −
Vi − Vi/H

sR3C2

Or,

Vo

Vi
=

1
H
− 1− 1/H

sR3C2

which is not in the form desired. However,

Vo

Vi/H
= 1− H − 1

sR3C2

which is in the correct form, with τ = R3C2/(H − 1).
To make Vi/H the effective input, we need to connect the inverting input of the
buffer operational amplifier to a point where the potential is Vi/H, while connecting
its output to the point where the potential is Vi .



Realizing T (s): Buffering the Input

T (s) = 1− 1
sτ

where τ =
R3C2

H − 1
, with H = 1 +

R4

R5
.

So τ =
C2R3R5

R4
.



An Ideal Grounded Inductor

L = R1τ =
R1C2R3R5

R4

This circuit is an example of a Generalized Impedance Converter (GIC).



GIC Inductor Uses

• Advantage: Can be used as a lossless inductor in filters
• Advantage: Can be very compact
• Advantage: Can give very large inductance values
• Disadvantage: Cannot carry high current
• Disadvantage: Cannot be used as an energy storage element



Circuit with General Impedances

H = 1 +
Z4

Z5

(HVi − Vi)/Z3 = (Vi − Vo)/Z2

Vi(H − 1)Z2/Z3 = Vi − Vo



Circuit with General Impedances: Analysis

Vo = Vi − Vi(H − 1)Z2/Z3

T (s) =
Vo

Vi
= 1− (H − 1)

Z2

Z3
= 1− Z4

Z5

Z2

Z3
= 1− Z2Z4

Z3Z5



Generalized Impedance Converter (GIC)

Zin =
Z1

1− T (s)
=

Z1
Z2Z4
Z3Z5

=
Z1Z3Z5

Z2Z4

This circuit is useful for creating exotic impedances that are not realizable with
normal RLC circuits.



A BPF Using a Grounded Inductor

ω0 =
1√
LC

Q =
R√
L/C

H = 1



BPF Using the Ideal Grounded Inductor

Where should we connect the load? If we use the terminal marked by the red dot,
that would correspond to the classical parallel RLC BPF. But that terminal is not
buffered. So loading it will alter the transfer function.
The terminal marked by the green dot is buffered, but it provides a magnified
version of the signal at the red dot. So we need to use the terminal with the green
dot as the output and then do gain reduction by splitting the input resistor R.



GIC BPF Design

One usually selects R4 = R5, so that H = 1 + R4/R5 = 2, R1 = R3 = r , and
C2 = C.
Then L = r2C.
Then

ω0 =
1√
LC

=
1√

r2C2
=

1
rC

and

Q =
R√
L/C

=
R√
r2

=
R
r

So given f0, Q and C, first we compute r = 1/(2πf0C), and then R = Qr .



GIC BPF Design Gain Reduction

The output taken at the green dot would have a gain of 2 with this arrangement, so
require a = 1/2.
This means that we need Rser = R/a = 2R, and Rshu = R/(1− a) = 2R.



GIC BPF Redrawn



GIC BPF With Gain Reduction



GIC BPF Design Summary

Specifications: f0, Q, C, and desired gain of 1.
1 Compute r = 1/(2πf0C).
2 Compute R = Qr .
3 Compute Rser = 2R.
4 Compute Rshu = 2R.
5 Set R4 = R5. Both can be some standard value, say 10 kΩ.
6 Set R1 = R3 = r .
7 Set C2 = C.



Remarks on the GIC BPF

• Works well in practice.
• Can be adjusted for high Q use.
• Q = 50 is possible.



GIC Redrawn



Frequency Dependent Negative Resistor (FDNR)

Let us select, Z1 = 1/(sC1), Z2 = R2, Z3 = R3, Z4 = R4, and Z5 = 1/(sC5). Then

Zin(s) =
Z1Z3Z5

Z2Z4
=

R3

s2C1C5R2R4

Let C1 = C5 = C, and R2 = R3. Then

Zin(s) =
1

s2C2R4
=

1
s2D

where D = C2R4.

Zin(jω) = − 1
ω2D

So the name is justified. This element helps in the design of ladder filters.



FDNR Symbol

FDNR Impedance: Z =
1

s2D
FDNR Impedance for s = jω: Z = − 1

ω2D
The symbol is made to look to like a double capacitor because of the double s,
that is the s2, in the denominator.



LC Ladder Lowpass Filter

One way of designing passive lowpass filters results in an LC ladder network. An
example is shown here.



Scaling of Impedances

In a network, if all impedances are scaled by the same factor, the transfer function
remains unchanged.



Bruton Transformation

Named after Prof. Leonard T. Bruton of the University of Calgary.
Inductor: In order to avoid inductors, Bruton decided to scale all impedances by a

factor
1
τs

, so that an inductor L with impedance sL is replaced by a resistance of

value R =
L
τ

.
Here τ is a conveniently chosen time constant.
Resistor: Then a resistor R should be replaced by an element whose impedance

is
R
τs

=
1

sτ/R
. So a resistor R has be replaced by a capacitor which has value

C = τ/R.

Capacitor: A capacitor C whose impedance is
1

sC
should be replaced by an

element whose impedance is
1

s2τC
. This is nothing but an FDNR with value

D = τC.



Bruton Transformation Summary

Original Element New Element
Inductor L Resistor R = L/τ
Resistor R Capacitor C = τ/R
Capacitor C FDNR D = τC



Bruton Transformation Example Network

Calculation of values: Cs = τ/Rs, R1 = L1/τ , D2 = τC2, R3 = L3/τ , D4 = τC4,
R5 = L5/τ , D6 = τC6, R7 = L7/τ , Co = τ/Ro.
τ should be chosen so that the resulting values are practical.
Each FDNR element can be implemented using the GIC circuit.


