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Gyrator and Ideal Transformer

Gyrator

• Circuit related to the GIC
• Can be used to make inductor using resistor and capacitor
• Two-port network with simple v -i description
• Can be used for impedance inversion
• Non-reciprocal network

Ideal Transformer

• Two-port network with simple v -i description
• Can be used for impedance scaling
• Reciprocal network
• Follows from the concept of mutual inductance



Coupled Coils: Mutual Inductance

v1 = L1
di1
dt

+ M
di2
dt

v2 = M
di1
dt

+ L2
di2
dt

This is a model that ignores winding resistances. We shall call this configuration a
2-port lossless transformer.



Instantaneous Power and Stored Energy

Instantaneous Power:

p = v1i1 + v2i2 = L1i1
di1
dt

+ Mi1
di2
dt

+ Mi2
di1
dt

+ L2i2
di2
dt

p =
d
dt

(
1
2

L1i21 + Mi1i2 +
1
2

L2i22

)
Stored Energy:

U =

(
1
2

L1i21 + Mi1i2 +
1
2

L2i22

)
=

1
2

(
L1i21 + 2Mi1i2 + L2i22

)



Stored Energy as a Quadratic Form

Stored Energy:

U =
1
2

(
L1i21 + 2Mi1i2 + L2i22

)
=

1
2
[
i1 i2

] [L1 M
M L2

] [
i1
i2

]

U =
1
2

i′Li

where i =

[
i1
i2

]
, and L =

[
L1 M
M L2

]
.

L is called the inductance matrix.
i is called the current vector.



Stored Energy cannot be Negative

L needs to be positive semidefinite.
2U = L1i21 + 2Mi1i2 + L2i22 needs to be nonnegative no matter what the real
quantities i1 and i2 are.
Set i2 = 0 to infer that L1 ≥ 0.
Set i1 = 0 to infer that L2 ≥ 0.
Assume that at least one of L1 and L2 is positive. If both are zero, we have no coils.
Suppose L1 > 0. Then

2U = L1i21 + 2Mi1i2 + L2i22 = L1

(
i21 + 2

M
L1

i1i2 +
L2

L1
i22

)



Condition on M

Completing squares we see that

2U = L1

(
i1 +

M
L1

i2

)2

+ L1

(
L2

L1
− M2

L2
1

)
i22

Or,

2U = L1

(
i1 +

M
L1

i2

)2

+

(
L2 −

M2

L1

)
i22

Setting i1 = −M
L1

i2, we can make the first term on the R.H.S. to be zero. Then

2U =

(
L2 −

M2

L1

)
i22 . For this to be nonnegative, we require L2 −

M2

L1
≥ 0. Or,

M2 ≤ L1L2



Range of M and the Coupling Coefficient

M2 ≤ L1L2

So M must fall in a range.

−
√

L1L2 ≤ M ≤
√

L1L2

Coupling coefficient:

k =
M√
L1L2

This is a measure of how well the flux produced by one coil links to the other coil.
From the range of M we see that

−1 ≤ k ≤ 1

Note that in this discussion, both M and k are signed quantities. This is in contrast
to what many books and softwares do. They restrict these quantities to be
nonnegative only.



Inductor from Coupled Inductors

Given a 2-port lossless transformer, there are 8 ways of deriving an inductor out of
it.
• Windings in series
• Windings in anti-series
• Windings in parallel
• Windings in anti-parallel
• Use primary with secondary open
• Use secondary with primary open
• Use primary with secondary shorted
• Use secondary with primary shorted



Windings in Series

Here v = v1 + v2, i1 = i , and i2 = i . So,

v = v1 + v2 = L1
di1
dt

+ M
di2
dt

+ M
di1
dt

+ L2
di2
dt

= L1
di
dt

+ M
di
dt

+ M
di
dt

+ L2
di
dt

Or,

v = (L1 + L2 + 2M)
di
dt

So we see that the arrangement behaves like an inductor of value
Lseries = L1 + L2 + 2M.



Windings in Anti-Series

Here v = v1 − v2, i1 = i , and i2 = −i . So,

v = v1 − v2 = L1
di1
dt

+ M
di2
dt
−M

di1
dt
− L2

di2
dt

Or,

v = L1
di
dt

+ M
d(−i)

dt
−M

di
dt
− L2

d(−i)
dt

= (L1 + L2 − 2M)
di
dt

So we see that the arrangement behaves like an inductor of value
Lanti−series = L1 + L2 − 2M.



Windings in Parallel

Here i = i1 + i2, v1 = v , and v2 = v . To start with we use v1 = v2. Or,

L1
di1
dt

+ M
di2
dt

= M
di1
dt

+ L2
di2
dt

Or,

(L1 −M)
di1
dt

= (L2 −M)
di2
dt



Windings in Parallel

So,
di2
dt

=
L1 −M
L2 −M

di1
dt

Now,

di
dt

=
d(i1 + i2)

dt
=

di1
dt

+
di2
dt

=

(
1 +

L1 −M
L2 −M

)
di1
dt

=
L1 + L2 − 2M

L2 −M
di1
dt

Or,
di1
dt

=
L2 −M

L1 + L2 − 2M
di
dt

So,
di2
dt

=
L1 −M
L2 −M

di1
dt

=
L1 −M

L1 + L2 − 2M
di
dt



Windings in Parallel

Now,

v = v1 = L1
di1
dt

+ M
di2
dt

= L1
L2 −M

L1 + L2 − 2M
di
dt

+ M
L1 −M

L1 + L2 − 2M
di
dt

Or,

v =
L1L2 −M2

L1 + L2 − 2M
di
dt

So we see that the arrangement behaves like an inductor of value

Lparallel =
L1L2 −M2

L1 + L2 − 2M



Windings in Anti-Parallel

Here i = i1 − i2, v1 = v , and v2 = −v .
Here the arrangement behaves like an inductor of value

Lanti−parallel =
L1L2 −M2

L1 + L2 + 2M

the derivation being similar to the parallel case.



One Winding Open

When the secondary is open, i2 = 0. So v1 = L1
di1
dt + M di2

dt = L1
di1
dt .

So the primary looks like an inductor of value L1, which is what we expect.
Similar analysis shows that when the primary is open, the secondary looks like an
inductor of value L2.



One Winding Shorted

When the secondary is shorted,

v2 = M
di1
dt

+ L2
di2
dt

= 0

So
di2
dt

= −M
L2

di1
dt



One Winding Shorted

Then

v1 = L1
di1
dt

+ M
di2
dt

= L1
di1
dt
−M

M
L2

dii
dt

=
L1L2 −M2

L2

di1
dt

So with the secondary shorted, the primary behaves like an inductor of value

L1,leakage =
L1L2 −M2

L2
= L1 −

M2

L2

Similar analysis shows that with the primary shorted, the secondary behaves like
an inductor of value

L2,leakage =
L1L2 −M2

L1
= L2 −

M2

L1



Condition for a Fixed Voltage Ratio

When is v1/v2 constant regardless of what the transformer currents are?
This is same as asking the following question.

Given constants α, β, γ, and δ, when is
αx + βy
γx + δy

independent of x and y?

The answer is that the ratio will be independent of x and y , when

α

γ
=
β

δ
.

Note the correspondences: α = L1, β = M, γ = M, δ = L2, x = di1
dt , and y = di2

dt .
So for a fixed voltage ratio v1/v2, we require,

L1

M
=

M
L2



Perfect Transformer

When we have
L1

M
=

M
L2

or, what is the same thing,

M2 = L1L2

or, what is the same thing,
k = ±1

the ratio v1/v2 is independent of the load, and such a transformer is called a
perfect transformer. In a perfect transformer, the primary and secondary are
perfectly coupled. The leakage inductances are zero in this case.



Voltage Ratio of a Perfect Transformer

v1

v2
=

L1

M
=

M
L2

= ±

√
L1

L2
= n

The sign is to be taken as the sign of M.
The number n is known as the turns ratio.
A perfect transformer is completely characterized by two parameters:

1 the voltage ratio n, and
2 any one of the inductances

This is a reduction from the three parameters needed to specify an arbitrary 2-port
lossless transformer.



Ideal Transformer
The perfect transformer looks like a load of inductance L1 on the primary side,
even if there is no load on the secondary. So it takes reactive current even on no
load.
Now consider a situation in which we let L1 →∞ keeping n = L1/M = M/L2 fixed.
Then we have a perfect transformer which does not load the primary if there is no
load on the secondary.
Such a transformer is called an ideal transformer. It is characterized by just one
parameter.
That is the turns ratio n = v1/v2 = L1

M = M
L2

.



Fixed Current Ratio

v1 = L1
di1
dt

+ M
di2
dt

Or,
v1

L1
=

di1
dt

+
M
L1

di2
dt

If we let L1 →∞ keeping n = L1/M = M/L2 fixed, the L.H.S. will tend to 0, and we
will have

di1
dt

= −M
L1

di2
dt

= −1
n

di2
dt

If we disregard the DC parts of the currents, we have

i1 = −1
n

i2

for the ideal transformer, in addition to the v1 = nv2 given by the fact that an ideal
transformer is also a perfect transformer.



Ideal Transformer: ABCD Matrix

Noting that Vin = V1, Vout = V2, Iin = I1, and Iout = −I2, we can write for the ideal
transformer

Vin = nVout

and
Iin =

1
n

Iout

So its ABCD matrix is [
n 0
0 1

n

]
Note that with the ideal transformer,

Zin =
AZload + B
CZload + D

=
nZload + 0
0Zload + 1

n

= n2Zload



Ideal Transformer: Points to Note

• No derivatives needed to describe it.
• It is a non-reactive element.
• Characterized by just one parameter n.
• Can be used for impedance transformation.
• Other transformers can be modelled in terms of the ideal transformer.



Isolation

One major use of a transformer is to provide isolation.



Transfering Series Element

Note that [
n 0
0 1

n

] [
1 Z
0 1

]
=

[
n nZ
0 1

n

]
=

[
1 n2Z
0 1

] [
n 0
0 1

n

]
So we have the following equivalence.



Transfering Shunt Element

Note that [
n 0
0 1

n

] [
1 0
Y 1

]
=

[
n 0

Y/n 1
n

]
=

[
1 0

Y/n2 1

] [
n 0
0 1

n

]
So we have the following equivalence.



Summary: Transfering Element

• Transfering an impedance from secondary to primary multiplies it by n2.
• Transfering an admittance from secondary to primary divides it by n2.
• This can be used repeatedly.



One More Look at the Ideal Transformer



Model for a Lossless Transformer

We start with
v1 = L1

di1
dt

+ M
di2
dt

v2 = M
di1
dt

+ L2
di2
dt

Let n =
M
L2

, so that nv2 =
M2

L2

di1
dt

+ M
di2
dt

.

Then

v1 =

(
L1 −

M2

L2

)
di1
dt

+ nv2

This suggests a primary side series inductor of value L1 −
M2

L2
followed by an ideal

transformer with ratio n =
M
L2

. But there is one more inductor.



Model for a Lossless Transformer

Note that

v2 = M
di1
dt

+ L2
di2
dt

= L2

d
(

i2 + M
L2

i1
)

dt
= L2

d (i2 + ni1)

dt
This suggests that there is a shunt inductor on the secondary side with value L2.



Lossless Transformer Model 1

n =
M
L2



Lossless Transformer Model 2

n =
M
L2

This model was obtained from Model 1 by transfering L2 to the primary side.



Lossless Transformer Model 3

n =
M
L2

This model was obtained from Model 1 by transfering L1 −M2/L2 to the secondary
side.



Lossless Transformer Model 4

n =
L1

M
This model was obtained like Model 1, but starting from the secondary side.



Lossless Transformer Model 5

n =
L1

M
This model was obtained from Model 4 by transfering L1 to the secondary side.



Lossless Transformer Model 6

n =
L1

M

This model was obtained from Model 4 by transfering L2 −M2/L1 to the primary
side.



Bernard D. H. Tellegen (1900-1990)

• Dutch Electrical Engineer
• Philips
• Pentode (1926)
• Gyrator (1948)
• Tellegen’s Theorem (1952)



The Gyrator

vin = riout

iin = vout/r

It is defined by a single parameter r , which is called its gyration resistance.
As viniin = rioutvout/r = voutiout, it is a lossless device.



The Gyrator: ABCD Matrix

Vin = rIout

Iin = Vout/r

So its ABCD matrix is [
0 r

1/r 0

]



The Gyrator: Impedance Inversion

For a load ZL connected at the output port of the gyrator, the input impedance is

ZI =
AZL + B
CZL + D

=
0ZL + r

(1/r)ZL + 0
=

r2

ZL

So the input impedance is a real quantity divided by the load impedance.
Connecting a capacitor of value C at the load will make the input behave like an
inductor of value L = r2C.



Making a Gyrator

iA = vi/r − (vi − vo)/r = vo/r

vA = vo + riA = vo + rvo/r = 2vo

iB = (vi − vo)/r − vo/r = (vi − 2vo)/r

vB = vi + riB = vi + r(vi − 2vo)/r = 2(vi − vo)



The Gyrator: One Realization

iA = vi/r − (vi − vo)/r = vo/r

vA = vo + riA = vo + rvo/r = 2vo

iB = (vi − vo)/r − vo/r = (vi − 2vo)/r

vB = vi + riB = vi + r(vi − 2vo)/r = 2(vi − vo)



The Gyrator: Components

• Two operational amplifiers
• 7 resistors
• Stable even if components are not perfectly matched.



The Gyrator: Demonstration

Tried with r = 1.0 kΩ, r ′ = 10.0 kΩ, C = 1.0 µF.
Operational amplifier: NE 5532
L should have been 1.0 H = 1000.0 mH.
Got L = 996.5 mH, Q = 23.19 at 100 Hz.



Ideal Transformer: Two Gyrators in Cascade

[
0 r1

1/r1 0

] [
0 r2

1/r2 0

]
=

[
r1/r2 0

0 r2/r1

]
=

[
n 0
0 1/n

]
where, n =

r1

r2
.

So the gyrator eliminates not only the inductor, but also the mutual inductor. Of
course, this is in theory only. It cannot provide the galvanic isolation that a
transformer does.



Floating Inductor

[
0 r

1/r 0

] [
1 0

sC 1

] [
0 r

1/r 0

]
=

[
srC r
1/r 0

] [
0 r

1/r 0

]
=

[
1 sr2C
0 1

]
Gyrator followed by Shunt Capacitor followed by Gyrator
= Series Inductor
Equivalent Inductance: L = r2C
Numerical Example: If r = 1 kΩ, and C = 0.1 µF, then L = 0.1 H.
Increasing r to 10 kΩ will make L = 10.0 H.



The Gyrator: Properties

• Lossless
• Non-reciprocal
• Non-reactive
• Converts capacitor to inductor.
• Converts a voltage source to a current source.
• Inverts the v-i characteristic of a non-linear device.
• Provides new two-port networks: isolator and circulator.



The Active Gyrator: Limitations

• Cannot handle large voltages or currents.
• Cannot provide galvanic isolation.



The Active Gyrator: Advantages

• Can be very compact.
• Has made telephone circuits smaller.
• Has greatly improved low frequency analogue filters.


