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Z Matrix of a Lossless Transformer

We start with

dl1 dig
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Vo = M d; L2 2

Assuming e time dependence converts differentiation to multiplication by s.
Vy = sLyly + sMi

Vo = sMly + slol

So the Z matrix of a lossless transformer is

B sLi sM
Z= [SM SL2:|



Z Matrix of a Lossless Transformer

B sLy sM
Z= |:SM SL2:|



Z Matrix of a T Network

Vi=hZy+(h+ b)Zm=(Z1 + Zn)h + Znl

Vo = bZo+ (h + k)Zm = Zmh + (22 + Zm) k2

2=z, z+ 2y



T Network for a Symmetric Z Matrix

Zy1-Z1p  ZLop-Zyp
1oe—F—F—r—T—"F3—»’




T Network for a Lossless Transformer

Applicable only when both sides share a common terminal.
Does not show any isolation unlike the models presented earlier.

Still useful for many calculations.



Z Matrix from ABCD Matrix

Vin = AVout + Blout
lin =C Vout + Dlout

Note that Vj = Vi, Vo = Vou, 1 = hy, and b = — oy,

Vi = AVo — Bb
Iy =CVo — Dy



Z Matrix from ABCD Matrix

s
— ————e
+ +
V] = Vln Vout— 2
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From the last equation

1 D
Vo=—-h+ =1
2= M + c
Using this in the V4 equation, we get
A AD A AD — BC
Vi = 6l1 + 7/2 —Bb = 6/1 + ?/2

Comparing with the definition of the Z matrix we get

_ [A/C (AD - BC)/C

Z= [Zﬁ 212] B [1/c D/C

2oy Zoo



Z Matrix of a Gyrator
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in . out
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The ABCD matrix of a gyrator is
A Bl [0 r
C D| |1/r 0O

Zyt Zi2| _ |0 —r
21 Zp| |r O

It is not symmetric. The gyrator is not a reciprocal network.

So its Z matrix is



Pole of Transfer Function

e T(s) is ratio of output to input for %! time dependence of all voltages and
currents.

¢ For lumped element networks, T(s) is the ratio of two real polynomials in s.

e SoT(s)= ggz; where A(s) and B(s) are real polynomials in s.

¢ For some values of s, the denominator polynomial B(s) can be 0. Such
values of s are called the poles of T(s).

¢ As we approach a pole, | T(s)| tends to infinity.

¢ One way of understanding a pole: We get non-zero output even if the input is
zero.



Pole Location and Stability

® If 51, S5, ..., Sy are the poles of a transfer function T(s), a natural response of
the form a;es'! + a,e%2! 4 ... a,e®!, may be observed at the output, even if
the input is zero. Here a4, ao, ..., ap are arbitrary constants.

e [f the transfer function of a system has a pole in the right half plane, then the
system is unstable.

® For a stable system, all poles of the transfer function should be in the left half
of the s plane (LHP), or on the imaginary axis.



Pole of Transfer Function: Example
R
L
Input |
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where L
wo = —=-
°~ RC
Pol = —wyg=——=.
ole at sy wo RC'
Sure enough we will see e~ re! = e%! time dependence at the output, if there is
charge on the capacitor.



Pole Location of First-Order Filters

: ©®
s=0+|m plane

S
S+wy

Pole for both the LPF T(s) = “0_ and the HPF T(s) =
S+ wo
Pole at sp = —wyp.



Pole Location of Second-Order Filters

Hwo
Ter(®) = @ ms ot

H“"s
Tore(8) = 22 “s+ Wl

Hs?
Tupr(S) =

§2 + 85+ wh

In each case, the denominator is

2, Wo 2
ST+ —=S+uw
Q 0



Pole Location of Second-Order Filters

The denominator is
wo

Q
The zeros of this polynomial are the poles.

s o Ty
17 7o T 22

__wo /1
S2=—5q " w0\ gz

The product of the poles is s1s = wg.
The location of the poles and the nature of the circuit depends on the value of Q.

2+ —=s+uf

and



The Underdamped Case: Q > 1/2
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Then we have a complex conjugate pair of poles.



The Underdamped Case: Q > 1/2

(O]

s=0+jw plane _
+ iy
54
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— 0y
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- Juy
The real part of both sy and s, is oy = —;%, which is negative.
The imaginary part of s1 is wy = woy/1 — ;5

Since 0% + w? = w3, the poles lie on a circle of radius wp.



The Underdamped Case: Q > 1/2

(O]

+ ]y

s=0+|w plane

- Juy

The angle v measured from the negative real axis to the upper pole s; is given by

o1
cos 1y = o 20

So
1

Q= 2cos




The Undamped Case: Q — oo
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s=0+|m plane Sy
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S1 = +jwo

So = —jwo



The Critically Damped Case: Q=1/2

. 11}
S=0+|w plane _
+ ]ty
a0
S1=Sz= —)
Double pole
- o
S1 = —wp
So = —wp

We have equal real negative roots. So we have a double pole.



The Overdamped Case: Q < 1/2

s=0+|w plane
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Both roots are real, negative, and unequal. We still have s1s, = wg.




Pole-Zero Diagram: First-order LPF

: ©®
s=0+|m plane




Pole-Zero Diagram: First-order HPF
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Pole-Zero Diagram: Second-order LPF
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Pole-Zero Diagram: Second-order BPF
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Pole-Zero Diagram: Second-order HPF
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Pole-Zero Diagram: Second-order Notch Filter
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Active Filter Design Plan

¢ Learn Lowpass Filter Design first.
e | earn Frequency Transformation Theory.

* Apply frequency transformation to design other types of filters from existing
LPF designs.



Filter Design Terminology: Loss Function a(w)

Power Gain Function: Output power divided by input power
(Power) Loss Function: Input power divided by output power

T
[ T(w)?

Pass band: Loss function a(w) is close to 1.
Stop band: Loss function a(w) is large.

a(w)



Filter Design Terminology: Brick Wall LPF: a(w)

wiln)

PASS BAND| STOP BAND - - >
0. 0}

Not realizable due to continuous nature of T(s).



Filter Design Terminology: Brick Wall LPF: | T (jw)|

IT( w)|

PASS BAND| STOP BAND - - =
€, 0




Filter Design: | T(jw)|?

e For lumped circuit networks, T(s) is a ratio of two polynomials with real
coefficients.

e So T(s)=T(s).
* S0 |T(jw)P? = T(jw) T(jw) = T(jw) T(jw) = T(—jw)T(jw) = T(=8)T(8)|s=jo



Butterworth Filter

® Proposed first in 1930 by the British physicist Stephen Butterworth (1885 -
1958).

2n
* Butterworth LPF: a(w) = 1 + (“)

We
¢ Defined by two parameters: Order n and cutoff frequency f.. Note that
We = 27ch



Butterworth Lowpass Filter | T (jw)|

T(jw) -1
1 ‘_\-% n= 3
3, n=10
. - w
w 2n
a(w)=1+ <wc>
. 1 1
| T(jw)? = =

a(w) 14 <w%)2n

Defined by two parameters: w; = 2xf., and order n.
IT(jw)=1atw=0,|T(jw)| =1/VvV2at w = we.



Butterworth LPF: Poles of T(s)T(—s)

Or

where k is an integer.



Butterworth LPF: Poles of T(s)T(—s)

So the pole with index k is given by

_Sik _ el(2k+1 B e/(k+1/2
Jwe
Or,
(o (k1/2)m
Sk :jwce’(k+1/2) = wce/(2+ n )
Or,
Sk = wCei¢k
where (k+1/2)
s + ™
Ok = 5 + Y

is the angle of s, measured anticlockwise from the positive real axis.



Butterworth LPF: Poles of T(s)T(—s)

|sk| = we. So all the poles of T(s)T(—s) lie on a circle of radius we.

Increasing k by 2nincreases ¢, by 27. So there are only 2n distinct poles. So
we shall use index k values from 0 to 2n — 1.

Increasing k by 1 increases ¢ by w/n. So the poles are equispaced on the
circle of radius w¢, with the angle between two adjacent poles being «/n.

k values from 0 to n — 1 give ¢, values between 7/2 and 37 /2. So these
poles lie in the left half plane (LHP). These are to be taken as the poles of
T(s) to satisfy the stability requirement.

Let us look at some example pole diagrams.



Butterworth LPF: Poles of T(s)T(—s) for n =1
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Butterworth LPF: Poles of T(s)T(—s) forn=2

s=0+|m plane
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Butterworth LPF: Poles of T(s)T(—s) forn=3

s=0+)m plane . +joy

- joy



Butterworth LPF: Poles of T(s)T(—s) for n =4
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Butterworth LPF: Poles of T(s)T(—s) forn=5

s=0+)m plane sp }+ jog

- joy



Butterworth LPF: Poles of T(s)

¢ Poles of T(s) are to be taken as s, for k =0,...,n— 1, so that they lie in the
LHP.

e We have n poles.

e Complex conjugates: Sx = Sp_1_x-
This is because ¢,_1_ + ¢, = 2.

e If nis odd, then S(n_1)/2 = —We.

e For neven, we have n/2 complex conjugate pairs of poles.
These can be implemented by n/2 Sallen-Key LPF sections.

e For nodd, we have (n— 1)/2 complex conjugate pairs of poles, and one real
pole at —we.
These can be implemented by (n — 1)/2 Sallen-Key LPF sections, and a
first-order RC LPF section.



Butterworth LPF: Poles of T(s) forn=5

s=0+|m plane s, t+jw
4] 1l

- J @y,



Butterworth LPF: Poles of T(s) forn=6

s=0+jw plane so b+ jo,

- J @y,



Butterworth LPF: List of Sections

neven:
* n/2 Sallen-Key sections with k going from 0 to n/2 — 1.

n odd:
* (n—1)/2 Sallen-Key sections with k going from 0to (n—1)/2 — 1.
¢ One first-order RC LPF section.

Note that in each case, the index k begins with 0.



Butterworth LPF: Sallen-Key Section Design

Since (k+1/2)
™ T
¢k:§+f
k+1/2
b=y = 5 — LA

1 1

Q= Dcosiy 25in%

All wy values are equal 10 we.
Wo,k = We

All H values are equal to 1.
He =1



Butterworth LPF Demonstration

e On web page, check for various n.
¢ Run ngspice for one output.



