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Z Matrix of a Lossless Transformer

We start with
v1 = L1

di1
dt

+ M
di2
dt

v2 = M
di1
dt

+ L2
di2
dt

Assuming est time dependence converts differentiation to multiplication by s.

V1 = sL1I1 + sMI2

V2 = sMI1 + sL2I2

So the Z matrix of a lossless transformer is

Z =

[
sL1 sM
sM sL2

]



Z Matrix of a Lossless Transformer

Z =

[
sL1 sM
sM sL2

]



Z Matrix of a T Network

V1 = I1Z1 + (I1 + I2)Zm = (Z1 + Zm)I1 + ZmI2

V2 = I2Z2 + (I1 + I2)Zm = ZmI1 + (Z2 + Zm)I2

Z =

[
Z1 + Zm Zm

Zm Z2 + Zm

]



T Network for a Symmetric Z Matrix



T Network for a Lossless Transformer

• Applicable only when both sides share a common terminal.
• Does not show any isolation unlike the models presented earlier.
• Still useful for many calculations.



Z Matrix from ABCD Matrix

Vin = AVout + BIout

Iin = CVout +DIout

Note that V1 = Vin, V2 = Vout, I1 = Iin, and I2 = −Iout.

V1 = AV2 − BI2

I1 = CV2 −DI2



Z Matrix from ABCD Matrix

From the last equation

V2 =
1
C

I1 +
D
C

I2

Using this in the V1 equation, we get

V1 =
A
C

I1 +
AD
C

I2 − BI2 =
A
C

I1 +
AD − BC
C

I2

Comparing with the definition of the Z matrix we get

Z =

[
Z11 Z12
Z21 Z22

]
=

[
A/C (AD − BC)/C
1/C D/C

]



Z Matrix of a Gyrator

The ABCD matrix of a gyrator is[
A B
C D

]
=

[
0 r

1/r 0

]
So its Z matrix is [

Z11 Z12
Z21 Z22

]
=

[
0 −r
r 0

]
It is not symmetric. The gyrator is not a reciprocal network.



Pole of Transfer Function

• T (s) is ratio of output to input for est time dependence of all voltages and
currents.
• For lumped element networks, T (s) is the ratio of two real polynomials in s.

• So T (s) =
A(s)
B(s)

, where A(s) and B(s) are real polynomials in s.

• For some values of s, the denominator polynomial B(s) can be 0. Such
values of s are called the poles of T (s).

• As we approach a pole, |T (s)| tends to infinity.
• One way of understanding a pole: We get non-zero output even if the input is

zero.



Pole Location and Stability

• If s1, s2, . . . , sn are the poles of a transfer function T (s), a natural response of
the form a1es1t + a2es2t + . . . anesnt , may be observed at the output, even if
the input is zero. Here a1, a2, . . . , an are arbitrary constants.
• If the transfer function of a system has a pole in the right half plane, then the

system is unstable.
• For a stable system, all poles of the transfer function should be in the left half

of the s plane (LHP), or on the imaginary axis.



Pole of Transfer Function: Example

T (s) =
ω0

s + ω0

where ω0 =
1

RC
.

Pole at s0 = −ω0 = − 1
RC

.

Sure enough we will see e− 1
RC t = es0t time dependence at the output, if there is

charge on the capacitor.



Pole Location of First-Order Filters

Pole for both the LPF T (s) =
ω0

s + ω0
, and the HPF T (s) =

s
s + ω0

.

Pole at s0 = −ω0.



Pole Location of Second-Order Filters

TLPF(s) =
Hω2

0

s2 + ω0
Q s + ω2

0

TBPF(s) =
H ω0

Q s
s2 + ω0

Q s + ω2
0

THPF(s) =
Hs2

s2 + ω0
Q s + ω2

0

In each case, the denominator is

s2 +
ω0

Q
s + ω2

0



Pole Location of Second-Order Filters

The denominator is
s2 +

ω0

Q
s + ω2

0

The zeros of this polynomial are the poles.

s1 = − ω0

2Q
+ ω0

√
1

4Q2 − 1

and

s2 = − ω0

2Q
− ω0

√
1

4Q2 − 1

The product of the poles is s1s2 = ω2
0.

The location of the poles and the nature of the circuit depends on the value of Q.



The Underdamped Case: Q > 1/2

If Q > 1/2,

s1 = − ω0

2Q
+ jω0

√
1− 1

4Q2

and

s2 = − ω0

2Q
− jω0

√
1− 1

4Q2

Then we have a complex conjugate pair of poles.



The Underdamped Case: Q > 1/2

The real part of both s1 and s2 is σ1 = − ω0

2Q
, which is negative.

The imaginary part of s1 is ω1 = ω0

√
1− 1

4Q2 .

Since σ2
1 + ω2

1 = ω2
0, the poles lie on a circle of radius ω0.



The Underdamped Case: Q > 1/2

The angle ψ measured from the negative real axis to the upper pole s1 is given by

cosψ =
−σ1

ω0
=

1
2Q

So
Q =

1
2 cosψ



The Undamped Case: Q →∞

s1 = +jω0

s2 = −jω0



The Critically Damped Case: Q = 1/2

s1 = −ω0

s2 = −ω0

We have equal real negative roots. So we have a double pole.



The Overdamped Case: Q < 1/2

s1 = − ω0

2Q
+ ω0

√
1

4Q2 − 1

s2 = − ω0

2Q
− ω0

√
1

4Q2 − 1

Both roots are real, negative, and unequal. We still have s1s2 = ω2
0.



Pole-Zero Diagram: First-order LPF

T (s) =
ω0

s + ω0



Pole-Zero Diagram: First-order HPF

T (s) =
s

s + ω0



Pole-Zero Diagram: Second-order LPF

T (s) =
Hω2

0

s2 + ω0
Q s + ω2

0



Pole-Zero Diagram: Second-order BPF

T (s) =
H ω0

Q s
s2 + ω0

Q s + ω2
0



Pole-Zero Diagram: Second-order HPF

T (s) =
Hs2

s2 + ω0
Q s + ω2

0



Pole-Zero Diagram: Second-order Notch Filter

T (s) =
H(s2 + ω2

0)

s2 + ω0
Q s + ω2

0



Active Filter Design Plan

• Learn Lowpass Filter Design first.
• Learn Frequency Transformation Theory.
• Apply frequency transformation to design other types of filters from existing

LPF designs.



Filter Design Terminology: Loss Function α(ω)

Power Gain Function: Output power divided by input power
(Power) Loss Function: Input power divided by output power

α(ω) =
1

|T (jω)|2

Pass band: Loss function α(ω) is close to 1.
Stop band: Loss function α(ω) is large.



Filter Design Terminology: Brick Wall LPF: α(ω)

Not realizable due to continuous nature of T (s).



Filter Design Terminology: Brick Wall LPF: |T (jω)|



Filter Design: |T (jω)|2

• For lumped circuit networks, T (s) is a ratio of two polynomials with real
coefficients.
• So T (s) = T (s).
• So |T (jω)|2 = T (jω)T (jω) = T (jω)T (jω) = T (−jω)T (jω) = T (−s)T (s)|s=jω.



Butterworth Filter

• Proposed first in 1930 by the British physicist Stephen Butterworth (1885 -
1958).

• Butterworth LPF: α(ω) = 1 +

(
ω

ωc

)2n

• Defined by two parameters: Order n and cutoff frequency fc . Note that
ωc = 2πfc .



Butterworth Lowpass Filter |T (jω)|

α(ω) = 1 +

(
ω

ωc

)2n

|T (jω)|2 =
1

α(ω)
=

1

1 +
(
ω
ωc

)2n

Defined by two parameters: ωc = 2πfc , and order n.
|T (jω)| = 1 at ω = 0, |T (jω)| = 1/

√
2 at ω = ωc .



Butterworth LPF: Poles of T (s)T (−s)

T (s)T (−s) =
1

1 +
(

s
jωc

)2n

Poles of T (s)T (−s) are given by

1 +

(
s

jωc

)2n

= 0

Or (
s

jωc

)2n

= −1 = ej(2k+1)π

where k is an integer.



Butterworth LPF: Poles of T (s)T (−s)

So the pole with index k is given by

sk

jωc
= ej (2k+1)π

2n = ej (k+1/2)π
n

Or,

sk = jωcej (k+1/2)π
n = ωcej

(
π
2 +

(k+1/2)π
n

)
Or,

sk = ωcejφk

where
φk =

π

2
+

(k + 1/2)π
n

is the angle of sk measured anticlockwise from the positive real axis.



Butterworth LPF: Poles of T (s)T (−s)

• |sk | = ωc . So all the poles of T (s)T (−s) lie on a circle of radius ωc .
• Increasing k by 2n increases φk by 2π. So there are only 2n distinct poles. So

we shall use index k values from 0 to 2n − 1.
• Increasing k by 1 increases φk by π/n. So the poles are equispaced on the

circle of radius ωc , with the angle between two adjacent poles being π/n.
• k values from 0 to n − 1 give φk values between π/2 and 3π/2. So these

poles lie in the left half plane (LHP). These are to be taken as the poles of
T (s) to satisfy the stability requirement.
• Let us look at some example pole diagrams.



Butterworth LPF: Poles of T (s)T (−s) for n = 1



Butterworth LPF: Poles of T (s)T (−s) for n = 2



Butterworth LPF: Poles of T (s)T (−s) for n = 3



Butterworth LPF: Poles of T (s)T (−s) for n = 4



Butterworth LPF: Poles of T (s)T (−s) for n = 5



Butterworth LPF: Poles of T (s)

• Poles of T (s) are to be taken as sk for k = 0, . . . ,n − 1, so that they lie in the
LHP.
• We have n poles.
• Complex conjugates: sk = sn−1−k .

This is because φn−1−k + φk = 2π.
• If n is odd, then s(n−1)/2 = −ωc .
• For n even, we have n/2 complex conjugate pairs of poles.

These can be implemented by n/2 Sallen-Key LPF sections.
• For n odd, we have (n − 1)/2 complex conjugate pairs of poles, and one real

pole at −ωc .
These can be implemented by (n − 1)/2 Sallen-Key LPF sections, and a
first-order RC LPF section.



Butterworth LPF: Poles of T (s) for n = 5



Butterworth LPF: Poles of T (s) for n = 6



Butterworth LPF: List of Sections

n even:
• n/2 Sallen-Key sections with k going from 0 to n/2− 1.

n odd:
• (n − 1)/2 Sallen-Key sections with k going from 0 to (n − 1)/2− 1.
• One first-order RC LPF section.

Note that in each case, the index k begins with 0.



Butterworth LPF: Sallen-Key Section Design

Since
φk =

π

2
+

(k + 1/2)π
n

ψk = π − φk =
π

2
− (k + 1/2)π

n

Qk =
1

2 cosψk
=

1

2 sin (k+1/2)π
n

All ω0 values are equal to ωc .
ω0,k = ωc

All H values are equal to 1.
Hk = 1



Butterworth LPF Demonstration

• On web page, check for various n.
• Run ngspice for one output.


