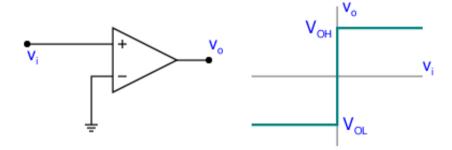

IN 277 Notes 6 Comparators Positive Feedback and Hysteresis RC Square Wave Oscillators

A. Mohanty

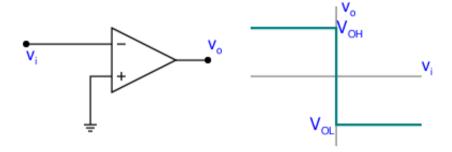
Department of Instrumentation and Applied Physics Indian Institute of Science Bangalore 560012

October 28, 2025

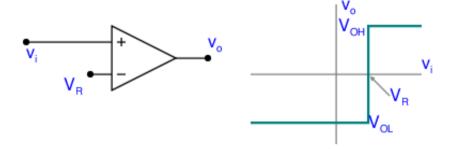
Operational Amplifier as a Comparator

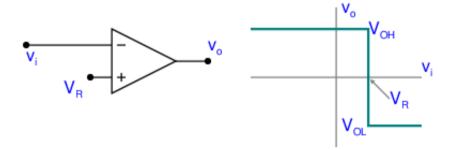

$$v_o = \begin{cases} V_{\text{OH}} & v_+ > v_-, \\ V_{\text{OL}} & v_+ < v_-. \end{cases}$$
 (1)

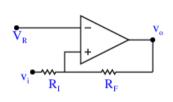
Uses: Waveform shaping, Analogue to Digital Conversion, ...

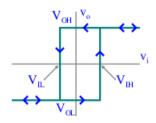

Comparator

- Not all operational amplifiers are suitable for use as comparators.
- The inputs may have special diode protection making it unsuitable for use as a comparator. Example: OP07
- Comparator ICs (Example: LM339)


Positive Comparator


Negative Comparator


Positive Comparator with Shift



Negative Comparator with Shift

Positive Comparator with Hysteresis

$$V_{\rm IH} = \left(1 + \frac{R_I}{R_F}\right) V_R - \frac{R_I}{R_F} V_{\rm OL}. \tag{2}$$

$$V_{\rm IL} = \left(1 + \frac{R_I}{R_F}\right) V_R - \frac{R_I}{R_F} V_{\rm OH}. \tag{3}$$

Derivation follows.

$V_{ m IH}$ Formula: Positive Comparator with Hysteresis

$$v_+ = \frac{R_F}{R_F + R_I} v_i + \frac{R_I}{R_F + R_I} v_o.$$

For this value to be more than $v_- = V_R$, even when $v_o = V_{OL}$, it is required that

$$\frac{R_F}{R_F + R_I} v_i + \frac{R_I}{R_F + R_I} V_{OL} > V_R.$$

$$\Rightarrow v_i + \frac{R_F + R_I}{R_F} \frac{R_I}{R_F + R_I} V_{OL} > \frac{R_F + R_I}{R_F} V_R.$$

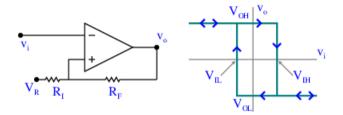
$$\Rightarrow v_i + \frac{R_I}{R_F} V_{OL} > (1 + R_I/R_F) V_R.$$

$$\Rightarrow v_i > (1 + R_I/R_F) V_R - \frac{R_I}{R_F} V_{OL} = V_{IH}.$$

$V_{\rm IL}$ Formula: Positive Comparator with Hysteresis

$$v_+ = \frac{R_F}{R_F + R_I} v_i + \frac{R_I}{R_F + R_I} v_o.$$

For this value to be less than $v_- = V_R$, even when $v_o = V_{OH}$, it is required that


$$\frac{R_F}{R_F + R_I} v_i + \frac{R_I}{R_F + R_I} V_{\text{OH}} < V_R.$$

$$\Rightarrow v_i + \frac{R_F + R_I}{R_F} \frac{R_I}{R_F + R_I} V_{\text{OH}} < \frac{R_F + R_I}{R_F} V_R.$$

$$\Rightarrow v_i + \frac{R_I}{R_F} V_{\text{OH}} < (1 + R_I/R_F) V_R.$$

$$\Rightarrow v_i < (1 + R_I/R_F) V_R - \frac{R_I}{R_F} V_{\text{OH}} = V_{\text{IL}}.$$

Negative Comparator with Hysteresis

$$V_{\rm IH} = \frac{R_F}{R_F + R_I} V_R + \frac{R_I}{R_F + R_I} V_{\rm OH}. \tag{4}$$

$$V_{\rm IL} = \frac{R_F}{R_F + R_I} V_R + \frac{R_I}{R_F + R_I} V_{\rm OL}.$$
 (5)

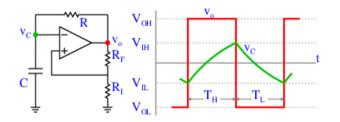
Derivation follows.

Derivation: Negative Comparator with Hysteresis

$$v_+ = \frac{R_F}{R_F + R_I} V_R + \frac{R_I}{R_F + R_I} v_o.$$

For $v_i = v_-$ to be more than v_+ , even when $v_o = V_{OH}$, it is required that

$$v_i > \frac{R_F}{R_F + R_I} V_R + \frac{R_I}{R_F + R_I} V_{\text{OH}} = V_{\text{IH}}.$$

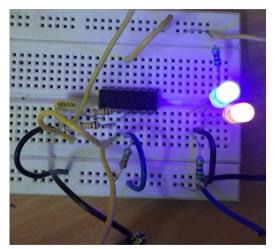

For $v_i = v_-$ to be less than v_+ , even when $v_o = V_{OL}$, it is required that

$$v_i < \frac{R_F}{R_F + R_I} V_R + \frac{R_I}{R_F + R_I} V_{OL} = V_{IL}.$$

Uses of Comparators with Hysteresis

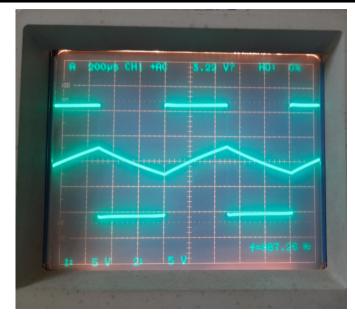
- Noise immunity
- Many line receiver ICs such as MC 1489 have built-in hysteresis to combat noise.
- Oscillators

Oscillator A

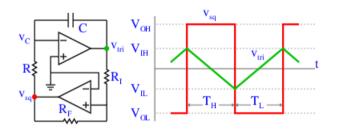


$$T_H = RC \ln \frac{V_{\rm OH} - V_{\rm IL}}{V_{\rm OH} - V_{\rm IH}}.$$
 (6)

$$T_L = RC \ln \frac{V_{\rm IH} - V_{\rm OL}}{V_{\rm IL} - V_{\rm OL}}.$$
 (7)


Here, $V_{\rm IH} = \frac{R_l}{R_F + R_l} V_{\rm OH}$, and $V_{\rm IL} = \frac{R_l}{R_F + R_l} V_{\rm OL}$. These were obtained by setting $V_R = 0$ in the expressions given for the negative comparator with hysteresis.

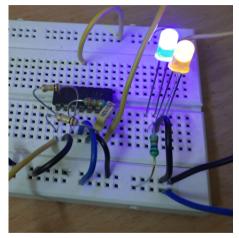
Implementation: Oscillator A



Uses $R_F=100\,\mathrm{k}\Omega$, $R_I=33\,\mathrm{k}\Omega$, $R=100\,\mathrm{k}\Omega$, and $C=10\,\mathrm{nF}$. IC: TL084, Supply: $\pm12~\mathrm{V}$.

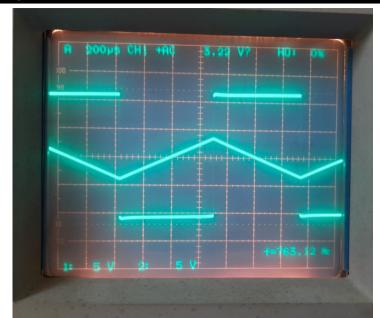
Output: Oscillator A

Oscillator B



$$T_H = RC \frac{V_{\rm IH} - V_{\rm IL}}{V_{\rm OH}}.$$
 (8)

$$T_L = RC \frac{V_{\rm IH} - V_{\rm IL}}{-V_{\rm OL}}.$$
 (9)


Here, $V_{\rm IH}=-\frac{R_I}{R_F}V_{\rm OL}$, and $V_{\rm IL}=-\frac{R_I}{R_F}V_{\rm OH}$. These were obtained by setting $V_R=0$ in the expressions given for the positive comparator with hysteresis. This oscillator has both square wave and triangle wave outputs.

Implementation: Oscillator B

Uses $R_F=100\,\mathrm{k}\Omega,\,R_I=33\,\mathrm{k}\Omega,\,R=100\,\mathrm{k}\Omega,$ and $C=10\,\mathrm{nF}.$ IC: TL084, Supply: ±12 V.

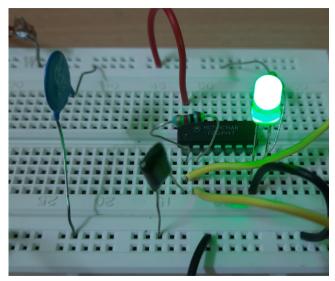
Output: Oscillator B

Schmitt Trigger Inverter

- Logic inverter designed to have hysteresis
- Improves noise immunity
- Frequently used in interfacing
- Examples: 74LS14, 74HC14, 74HCT14
- Can be used for making an RC oscillator
- Similar to Oscillator A

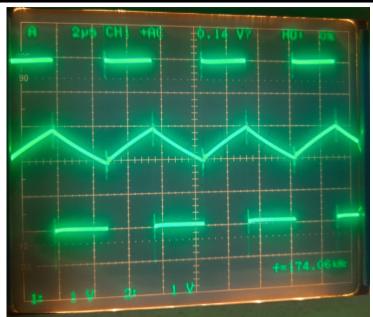
Symbol: Schmitt Trigger Inverter

RC Oscillator using an inverting Schmitt Trigger



$$T_H = RC \ln \frac{V_{\rm OH} - V_{\rm IL}}{V_{\rm OH} - V_{\rm IH}}.$$
 (10)

$$T_L = RC \ln \frac{V_{\rm IH} - V_{\rm OL}}{V_{\rm IL} - V_{\rm OL}}.$$
 (11)


 $V_{\rm OH},~V_{\rm OL},~V_{\rm IH},$ and $V_{\rm IL}$ are to be obtained from IC data sheet or measured. For CMOS gates, $V_{\rm OH}=V_{\rm DD},~V_{\rm OL}=0.$ Many oscillators used in digital systems are of this type.

Implementation: 74HC14 RC Oscillator

Uses $R = 1 \text{ k}\Omega$, and C = 6.8 nF.

Output: 74HC14 RC Oscillator

Calculation: 74HC14 RC Oscillator

From the output display, $V_{\rm OH}=5\,\rm V$, $V_{\rm OL}=0\,\rm V$, $V_{\rm IH}=3\,\rm V$, $V_{\rm IL}=2\,\rm V$. Using $R=1\,\rm k\Omega$, and $C=6.8\,\rm nF$ we get $T_H=2.7572\,\rm \mu s$, and $T_L=2.7572\,\rm \mu s$. Calculated period $T=T_H+T_L=5.5143\,\rm \mu s$. Calculated frequency $f=1/T=181.35\,\rm kHz$. The measured frequency (as seen on the screen) is 174.06 kHz.