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Augmenting the unitary transformation which generates a quantum walk by a generalized phase gate G is a
symmetry for both noisy and noiseless quantum walk on a line, in the sense that it leaves the position
probability distribution invariant. However, this symmetry breaks down in the case of a quantum walk on an n
cycle, and hence can be regarded as a probe of the walk topology. Noise, modeled here as phase flip and
generalized amplitude damping channels, tends to restore the symmetry because it classicalizes the walk.
However, symmetry restoration happens even in the regime where the walker is not entirely classical, because
noise also has the effect of desensitizing the operation G to the walk topology. We discuss methods for physical
implementation, and talk about the wider implications to condensed matter systems.
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I. INTRODUCTION

Classical random walks �CRWs� have found broad
applications—from randomized algorithms to the under-
standing of condensed matter systems �1�. Unlike CRWs,
quantum walks �QWs� �2� involve a superposition of states,
being unitary, thereby simultaneously exploring multiple
possible paths of a walker, and the amplitudes corresponding
to different paths are then interfered via a measurement to
arrive at a probabilistic result. This makes QWs spread qua-
dratically faster than CRWs. The quadratic advantage of
QWs, for instance, is exploited to speed up the spatial search
variant of Grover’s search algorithm �3�. A single-particle
quantum lattice gas automata �QLGA� can also be shown to
be equivalent to QWs �4�. Experimental implementation of
QWs has been reported �5�, and various other schemes have
been proposed for its physical realization �6,7�, which has
motivated us to study QWs in an open quantum system �8,9�:
since environmental effects �noise� will necessarily tend to
destroy the coherent superposition of states central to QWs,
thus transforming it to CRWs.

This paper studies QWs on an n cycle, which is subjected
to the following noise processes: the phase flip �decoherence
without dissipation� �10�, and generalized amplitude damp-
ing channels �decoherence with dissipation� �8,11–13�,
which are of relevance to studies in quantum optics and con-
densed matter systems. The latter type of noise in the QWs
context has been studied by us in Ref. �8�. We study the
transition of a noisy QWs on an n cycle to a CRWs in a
different way: we identify a certain symmetry operation �de-
fined below� that is sensitive to the walk topology, in the
sense that the symmetry holds for QWs on a line but not for
that on a cycle. The difference arises due to the fact that
unlike QWs in a line, the walk on an n cycle involves inter-

ference between forward and backward propagating wave
functions. Noise tends to restore symmetry both by classical-
izing the walk and also desensitizing the symmetry operation
as a topology probe for the QWs.

This paper is organized as follows. In Sec. II, we define
the discrete time QWs on an n cycle and introduce a gener-
alized phase gate which is a symmetry operation and show
the breakdown in symmetry when the QWs is implemented
on an n cycle. In Sec. III, the effect of noise on the QWs and
its influence on the restoration of symmetry is discussed. The
implication of this work to condensed matter systems is dis-
cussed in Sec. IV before conclusions are made in Sec. V.

II. QUANTUM WALK ON AN n CYCLE
WITH GENERALIZED PHASE GATE

Consider a particle �a qubit� which is executing a discrete
time QWs in one dimension, and its internal states �0� and �1�
span Hc, which is referred to as the coin Hilbert space. The
allowed position states of the particle are �x�p, which span
Hx, where x�I, the set of integers �the subscript p in the ket
is used to distinguish the position kets from the internal
states, which are represented subscriptless�. In an n-cycle
walk, there are n allowed positions, and in addition the pe-
riodic boundary condition �x�p= �x mod n�p is imposed. A t
step coined QWs is generated by iteratively applying a uni-
tary operation W which acts on the Hilbert space Hc � Hx:

��t� = Wt��0� , �1�

where ��0�= �cos��0 /2��0�+sin��0 /2�ei�0�1���0�p is an arbi-
trary initial state of the particle and W�U B�� ,� ,��. The
B�� ,� ,�� is an arbitrary SU�2� coin toss operation which acts
on the coin space given by*subhashish@cmi.ac.in
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B��,�,�� = � ei� cos��� ei� sin���
e−i� sin��� − e−i� cos���

	 . �2�

The matrix B�� ,� ,��, whose elements are written as Bjk, con-
trols the evolution of the walk, with the Hadamard walk
corresponding to B�0° ,45° ,0° �. The U is a unitary
controlled-shift operation

U � �0�
0� � �
x

�x − 1�p
x�p + �1�
1� � �
x

�x + 1�p
x�p.

�3�

The probability to find the particle at site x after t steps is
given by

p�x,t� = 
x�ptrc���t�
�t���x�p. �4�

Now, given an element from the two-parameter group

G��,�� = �ei� 0

0 ei� 	 , �5�

which represents a generalized phase gate acting on the Hc,
we find that the operation W→GW leaves the probability
distribution p�x , t� of the particle on the line invariant; hence
the walk is symmetric under the operation

G��,��:�j� � ei� j̄�+j���j� �6�

for �j� in the computational basis �eigenstates of the Pauli
operator 	z� and j=0,1. The physical significance of G is
that it helps identify a family of QWs that are equivalent
from the viewpoint of physical implementation, which can
sometimes allow a significant practical simplification �8�.
For example, suppose the application of the conditional shift
is accompanied by a phase gate. The walk symmetry implies
that this gate need not be corrected for, thereby resulting in a
saving of experimental resources. The inclusion of a phase
gate on the coin operator is equivalent to a phase gate at each
lattice site in the sense of QLGA, with the physical meaning
of a constant potential. The evolution rules for single-particle
QLGA can be classified into gauge equivalent classes, there
being a difference between the class of rules for periodic
�n-cycle� and nonperiodic one-dimensional lattices and this
feature can be exploited to distinguish between these two
spatial topologies �14�.

It turns out that in the case of QWs on an n cycle, this
symmetry breaks down. To see this, we note that the t-fold
application of the grand unified breaking �GUB� operation
on a particle with initial state ��0� on the line and on an n
cycle produces, respectively, the states

�GUB�t��0� = �
j1,j2,. . .,jt

ei�J̄t�+Jt��Bjt,jt−1
¯ Bj2,j1

�Bj10a + Bj11b�


�jt��2Jt − t�p, �7a�

�GUB�t��0� = �
j1,j2,. . .,jt

ei�J̄t�+Jt��Bjt,jt−1
¯ Bj2,j1

�Bj10a + Bj11b�


�jt��2Jt − t mod n�p, �7b�

where Jt= j1+ j2+ ¯ + jt and J̄t is a bitwise complement of Jt.

All terms in superposition �7a� contributing to the probability
to detect the walker at a given position x=2Jt− t have the

same phase factor, ei�J̄t�+Jt��, which is fixed by Jt= �x+ t� /2
�where, it may be noted, x and t are both even or both odd�.
Thus, this factor does not affect the probability to detect the
walker at x, whence the symmetry. In the case of QWs on an
n cycle the breakdown of the symmetry �8�, see Fig. 1, can
be attributed to the topology of the cycle, which introduces a
periodicity in the walker position �determined by a congru-
ence relation with modulus given by the number of sites�, but
not in the phase of the superposition terms. As a result, fixing
x fixes Jt mod n= �x+ t� /2 mod n, but not Jt itself, so that the
phase terms in the superposition �7b� do not factor out glo-
bally. Thus if � or � is nonvanishing and ���, then in
general the symmetry G is absent in the cyclic case.

We quantify the breakdown in symmetry by means of the
Kolmogorov distance �or trace distance �12��, given by

d�t� = 1
2�

x

�p�x,t� − q�x,t�� , �8�

between the walker position distributions obtained without
and with the symmetry operation, given by p�x , t� and q�x , t�,
respectively. The breakdown in symmetry for a noiseless cy-
clic QWs is depicted by the bold curve in Fig. 2 as a function
of the number of turns � �where t=�s, with n=2s+1�.
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FIG. 1. �Color online� Position probability distribution for a
Hadamard walk B�0° ,45° ,0° � on �a� a line and �b� an n-cycle,
with �n=51� and initial state �1 /�2���0�+ �1��, for the unitary case
��0=0�. Each figure presents the distribution with and without be-
ing subjected to the phase operation G�30° ,50° �. In �a�, there is
perfect symmetry, since both distributions coincide. In �b� the two
plots do not overlap, indicating the breakdown of the symmetry.
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III. EFFECT OF NOISE AND SYMMETRY RESTORATION

We now describe the n-cycle quantum walk on the par-
ticle, a two level system, when subjected to noise. The situ-
ation is modeled as an interaction with a thermal bath, char-
acterized by phase damping �8,12� or a generalized
amplitude damping channel, the latter process being repre-
sented by the following Kraus operators �13�:

E0 � �

�1 − ���� 0

0 1
�, E1 � �

 0 0

����� 0
� ,

E2 � �1 − 

1 0

0 �1 − ����
�, E3 ��1 − 




E1

†,

where 0�
�1, ����=1−e−�0�2Nth+1��, and 
�
Nth+1

2Nth+1 , with
Nth��exp��� /kBT�−1�−1, T is temperature, �0 is a measure
of the strength of coupling to the environment, and � is the
duration for which the environment is modeled to interact
with the coin. The density operator �c of the coin evolves
according to �c→� jEj�cEj

†. The full evolution of the walker,
described by density operator ��t�, is given by
� jEj�W��t−1�W†�Ej

†, where the Ej’s are understood to act
only in the coin space.

The curves in Fig. 2 plot d��� as a function of turns in the
case of unitary and noisy QWs �parametrized by �0�, and
demonstrate the gradual restoration of symmetry with time
on account of the noise. Although the figure employs gener-
alized amplitude damping noise, qualitatively the same be-
havior can be seen for a phase damping noise. Here, a gen-
eral feature is that d��� is nonzero when ��2, being then
equivalent to a �noisy� QWs on a line. Thereafter, d��� at first
increases with increasing turns, being dominated by unitary
evolution, and eventually falls down, being dominated by
noise. It is observed that for sufficiently low noise levels, the

time at which this turnover in slope happens remains con-
stant, for given �. This is depicted in Fig. 2 for the case of a
generalized amplitude damping channel corresponding to a
fixed temperature and varying �0. However, we note that for
strong enough noise, the turnover happens earlier.

Typical noisy probability distributions are depicted in
Figs. 3�a� and 3�b� at an instant where the symmetry has
been almost fully restored even when the walk is well within
the quantum regime. Figure 3�c� represents a classicalized
distribution, indicated by the regular envelope �that will
eventually turn into a uniform distribution�.

We define coherence C as the sum of the off-diagonal
terms of states in Hc � Hp, where Hc and Hp are the internal
and position Hilbert space of the quantum walker, respec-
tively. If the state of the quantum walker is �
=�ab;jk�ab;jk�a��j�p
b�
k�p, where �a�, �b��Hc and �j�p, �k�p
�Hp, then

C � � �
a�b,j=k

+ �
a,b,j�k

+ �
a�b,j�k

	��ab;jk� , �9�

the sum of the absolute values of all off-diagonal terms of �
in the computational-position basis. The coherence function
is defined as the quantity C�m�, where m� �1,2 , . . . ,M�, ob-
tained by partitioning C into M intervals of size s /M, such
that for the mth interval �m−1��s /M�� �j−k��m�s /M�.
Physically, C�m� is a measure of coherence between two
points on a �in general, noisy� quantum walker, as a function
of their mutual separation. Let C0�m� represent the coherence
function of the corresponding noiseless walk. At any turn �,
we define the normalized coherence function by c�m�
�C�m� /C0�m�, and, analogously, normalized Kolmogorov
distance by D����d��� /d0���.

Since noise tends to destroy superpositions, and the
breakdown in symmetry is essentially a phenomenon of su-
perposition of the forward and backward waves, noise tends
to restore symmetry, as seen in Fig. 3. This is brought out by
Fig. 4 for two possible values of G. In the figure, in spite of
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FIG. 2. �Color online� Kolmogorov distance d��� against the
number of turns ��� of the cyclic QWs in the noiseless and noisy
cases with n=51. For the unitary case ��=0; bold line� the walk
becomes increasingly asymmetric as the number of turns is in-
creased, until about 7–10 turns, after which it fluctuates around d
�0.15. The plots represent generalized amplitude damping noise at
different noise levels at temperature T=3.5 �in units where ��kB

�1�, �=0.1, and �=30°. The walker is evolved with the initial
state parameters �in degrees� �0=30°, �0=40°, with
B�20° ,10° ,30° � and G�40° ,50° �.
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FIG. 3. �Color online� Position probability distribution for a
Hadamard walk B�0,45° ,0� on an n cycle �n=51� with initial state
�1 /�2���0�+ �1�� when subjected to generalized amplitude damping
noise with �=0.1 and finite T �=6.0� for �=11. �a�, �b� �0=0.025,
�b� is the distribution for the QWs augmented by operation
G�30° ,50° �; note the walk remains quantum yet with symmetry
almost completely restored; �c� classicalized pattern �indicated by
the regular envelope� obtained with larger noise level corresponding
to �0=0.1.
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its considerable spikiness, the bold curve, representing c�m
=M�, shows an overall fall. A similar trend as depicted in
this figure has been numerically checked for various other
values of G. This raises the question of whether symmetry
restoration of the cyclic QWs can be considered as a good
indicator of classicalization. Here we note that from Figs.
3�a� and 3�b� the probability distribution pattern is seen to be
clearly quantum, even though symmetry has been almost
fully restored. This is suggestive of the notion that symmetry
tends to be restored even in the regime where the walk still
possesses some quantum features.

The reason D�t� is not a faithful indicator of classicaliza-
tion of the walk has to do with the effect of noise on the
sensitivity of the symmetry operation G�� ,�� to the topol-
ogy of the path. Since this operation senses the closure of the
path through the superposition of the forward and backward
waves, the suppression of superposition through noise will
also have the effect of desensitizing the operation to the clo-
sure of the path, thereby moving the noisy cyclic QWs to-
ward a noisy QWs on a line from the perspective of this
operation, before further classicalization transforms it into a
cyclic CRWs. And as shown in Ref. �8�, all the above sym-
metries are respected by a �noisy� quantum walk on a line,
both in the case of phase damping noise, which in NMR
nomenclature �15� is called a T2 process, and generalized
amplitude damping, which is a T1, T2 process �15�. This
brings out the point that decoherence �T2 process� is the prin-
cipal mechanism responsible for the restoration of symme-
tries. It also highlights the interplay between topology and
noise in a quantum walk on an n cycle. A similar interplay
may be expected also in the case of QWs with other non-
trivial topologies.

The experimental study of the decoherence and decay of
quantum states of a trapped atomic ion’s harmonic motion
subjected to engineered reservoirs, both of the phase damp-
ing and amplitude damping kind, have been reported in Ref.
�11�. The phase reservoir is simulated by random variation of

the trap frequency � without changing its energy �nondissi-
pative�, while the amplitude reservoir is simulated by ran-
dom electric field along the axis of the trap �dissipative�.
Coupling the reservoirs reported in Ref. �11� to the scheme
presenting the combination of pulses required to implement a
QWs on a line and on a cycle in an ion trap �6� provides a
convenient setup to demonstrate the symmetry-noise
interplay.

The interplay between geometry and decoherence has
been noted before in the case of delocalized bath modes �16�,
as against localized bath modes �16,17�. This is of relevance
as the noise processes considered here �8,13� are described
by the interaction of the system with delocalized bath modes.

IV. IMPLICATIONS TO CONDENSED
MATTER SYSTEMS

Breaking of the symmetry due to the change in walk to-
pology causes long-range correlations to develop, in analogy
to the hydrodynamics of ordered systems such as spin waves
in: ferromagnets, antiferromagnets �where it is the spin wave
of staggered magnetization�, second sound in He3, and nem-
atic liquid crystals �18�. Here the correlations may be iden-
tified with symmetry-broken terms �whose measurement
probability depends on � or � in the walk augmented by
G�� ,��� in the superposition of the quantum walker. One
finds that correlations are set up rapidly over large distances
with increase in the winding of the walker, until symmetry is
broken throughout the cycle. However, as noted above, the
randomization produced by noise causes the reappearance of
symmetries. The symmetry breaking and the symmetry re-
storing agents are thus different, the former given by the
topological transition from a line to an n cycle, the latter
being the noise-induced randomization.

Coherence is also widely used to understand quantum
phase transitions, the transition from superfluid to Mott insu-
lator state in an optical lattice being one specific example
�19�. In Ref. �20� the quantum phase transition using QWs in
a one-dimensional optical lattice has been discussed. Using
various lattice techniques, desired geometries to trap and ma-
nipulate atoms can be created. In most physical situations
one deals with closed geometries. The characteristics of the
n-cycle walk, in particular the reappearance of the symmetry
�implying a family of implementationally equivalent noisy
cyclic QWs� while still in the quantum regime, presented
here could be of direct relevance to such situations.

The ubiquity of the ideas developed in this paper can be
seen from the fact that the quantum dynamics of a particle on
a ring �cycle� subject to decoherence along with dissipation
finds its place in the physics of quantum dots. The effective
action of a quantum dot accounting for the joint effect of
charging and coupling to an environment �21� mirrors the
behavior of the quantum dynamics of a particle on a ring
�cycle� subject to a dissipative damping mechanism describ-
ing the dissipation of the energy stored in dynamic voltage
fluctuations into the microscopic degrees of freedom of the
quasiparticle continuum. In the absence of dissipation, the
action describes the ballistic motion of a quantum particle on
a ring. The ring topology reflects the 2� periodicity of the
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metry restoration in the walk even in the quantum regime, cf. Fig. 3.
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quantum phase, which is in turn related to the quantization of
charge, thereby highlighting the point that the main source of
charge quantization phenomena, in the approach developed
in Ref. �21�, is the periodicity, of the relevant variable, due to
the ring topology. With the increase in the effect of dissipa-
tion, the particle begins to forget its ring topology �full tra-
versal of the ring become increasingly unlikely�, leading to a
suppression of charge quantization phenomena. This behav-
ior is similar to that seen here for the case of a quantum walk
on a cycle, where with an increase in the effect of the envi-
ronment, i.e., with increasing noise, the walker in unable to
perceive the cyclic structure of the walk space. That the
topology-noise interplay studied here has an impact on a
concrete condensed matter system, viz. the crossover from
strong to weak charge quantization in a dissipative quantum
dot, highlights the generality and scope of these ideas.

V. CONCLUSION

We conclude that the symmetry-topology-noise interplay
presented here would be of relevance to quantum-
information processing systems, and have wider implications
to the implementation of quantum walks to condensed matter
systems.
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