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We present a new form of a Parrondo game using discrete-time quantum walk on a line. The two players
A and B with different quantum coins operators, individually losing the game can develop a strategy to
emerge as joint winners by using their coins alternatively, or in combination for each step of the quantum
walk evolution. We also present a strategy for a player A (B) to have a winning probability more than
player B (A). Significance of the game strategy in information theory and physical applications are also
discussed.
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1. Introduction

Game theory gives an account of how the involved parties decide strategies in their personal interest in a given situation, on rational
grounds. It has found to have relevance to social sciences, biology, and economics [1–5], among others. By replacing classical probabilities
with quantum amplitudes and allowing the players to employ superposition, entanglement and interference, quantum game theory has
lead to new interesting effects and has become an active area of research. Quantum game can be quantified as any quantum system which
can be manipulated by two or more parties according to their personal interest [6,7].

The system in which we propose a quantum game in this Letter is a quantized version of the classical random walk (CRW), that is,
the quantum walk system. Quantum walk (QW) evolution on a particle involves the quantum features of interference and superposition,
resulting in the quadratically faster spread in position space in comparison to its classical counterpart, CRW [8–12]. QWs are studied
in two forms: continuous-time QW (CTQW) [12] and discrete-time QW (DTQW) [10,11,13,14] and are found to be very useful from the
perspective of quantum algorithms [15–19]; to demonstrate coherent quantum control over atoms; quantum phase transition [20]; to
explain phenomena such as the breakdown of an electric-field driven system [21] and direct experimental evidence for wavelike energy
transfer within photosynthetic systems [22,23]; to generate entanglement between spatially separated systems [24]; to induce dynamic
localization in Bose–Einstein condensate in an optical lattice [25]. Experimental implementation of QWs has been made in an NMR system
[26–28]; in the continuous tunneling of light fields through waveguide lattices [29]; in the phase space of trapped ions [30,31]; with single
optically trapped neutral atoms [32]; and with single photons [33,34]. Various other schemes have been proposed for their realization in
different physical systems [35–37].

In this Letter we present a quantum game, in the form of Parrondo’s game, using a single-particle QW system. Parrondo’s game
involves two games, which when played individually, produce a losing expectation and when played in any alternating order, winning
expectation is produced [38–40]. Parrondo’s games were devised, originally, to provide a mechanism to harness Brownian motion and
convert it to directed motion, or more generally, a Brownian motor, without the use of macroscopic forces or gradients [41]. They have
since found applications in many areas. Their applications have also been made in the quantum regime. Grover’s algorithm [42] has
been analyzed in the context of quantum Parrondo’s paradox [43]. A quantum implementation of a capital-dependent Parrondo’s paradox,
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using an economical number of qubits, has been presented in [44]. Different forms of Parrondo’s game using a QW with a space and time-
dependent potential [45], (with noise [46]), using a QW with history dependence [47], using a QW as a source of randomness for randomly
switched strategies [48] and using cooperative QW in which interaction between multiple participants replaces position-dependence as
an opportunity for the Parrondo effect to occur [49], have been introduced earlier. We present a simple form of Parrondo’s game using
two players A and B with different quantum coins as quantum coin operators to evolve single-particle DTQW on a line. If the player A
(B), using his coin evolves the DTQW to t steps such that the probability on the right (left) hand side of the origin (x = 0) of the particle
subjected to QW is greater than that on the left (right), the player A (B) is declared as winner. In the game form we present, the players
A and B individually losing the game using their coins can develop a strategy to maintain equilibrium (equal probability on both the sides
of the origin) and emerge as joint winners using their coins alternatively, or in combination for each step of the DTQW evolution. We also
present a situation where player A (B) can have a winning probability more than a player B (A) and emerge as a solo winner. Recently,
using the chirality distribution of the DTQW, a coin flipping game has been presented [50]. We believe that the manipulation of DTQW
in the form of game using multiple players will give a general framework for application of QW, using multiple coins, to algorithms and
various physical processes.

In Sections 2 and 3, we present the standard form of DTQW and Parrondo’s game. In Section 4, a game using DTQW, in the form of
Parrondo’s game, is presented. Different strategies for different situations is discussed in Section 5. In Section 6, we conclude by discussing
the significance of game strategy in information theory and physical applications.

2. Discrete-time quantum walk

The DTQW in one-dimension is modelled as a 2 × K system, that is, a two-level system (a qubit) in the Hilbert space Hc , spanned by
|0〉 and |1〉, and a K level position system, a position degree of freedom in the Hilbert space H p , spanned by |ψx〉, where x ∈ I, the set of
integers. A t-step DTQW, with unit time required for each step of walk, is generated by iteratively applying a unitary operation W which
acts on the Hilbert space Hc ⊗ H p :

|Ψt〉 = W t |Ψins〉. (1)

Here |Ψins〉 = (cos(δ/2)|0〉+ sin(δ/2)eiφ |1〉)⊗|ψ0〉, is an arbitrary initial state of the particle at the initial position x = 0 and W ≡ S(B ⊗1),
where

B = Bξ,θ,ζ ≡
(

eiξ cos(θ) eiζ sin(θ)

e−iζ sin(θ) −e−iξ cos(θ)

)
∈ U (2), (2)

is the quantum coin operation which will evolve the particle into the superposition of the particle state. S is a controlled-shift operation

S ≡
∑

x

[|0〉〈0| ⊗ |ψx − 1〉〈ψx| + |1〉〈1| ⊗ |ψx + 1〉〈ψx|
]
, (3)

and shifts the particle in superposition to superposition of position space. The probability to find the particle at site x after t steps is given
by P (x, t) = 〈ψx| trc(|Ψt〉〈Ψt |)|ψx〉.

For a particle, with initial state at the origin

|Ψins〉 = 1√
2

(|0〉 + i|1〉) ⊗ |ψ0〉, (4)

using an unbiased coin operation, that is, Bξ,θ,ζ with ξ = ζ = 0 (B0,θ,0 ≡ Bθ ), the variance after t steps of walk is [1 − sin(θ)]t2 and a
symmetric probability distribution in position space is obtained. Choosing θ = 45◦ (Bπ/4) leads to a standard form of DTQW, the Hadamard
walk [51]. For θ = 0, the two states, |0〉 and |1〉 move away from each other ballistically without any interference effect. With increase in θ ,
interference effect is seen and the distribution which is wider for low values of θ , becomes narrower with increase in θ . The interference
effect again disappears for the other extreme value of θ = π/2. The two horned peaks on either side of the distribution, which move away
with increase in the number of steps, makes QW highly transient in nature. Small amount of decoherence in QW dynamics enlarges the
range of quantum dynamics by providing a wider range of possibilities for tuning the properties of QWs [52] and to observe symmetries
[53]. Aperiodic QW [54] and disordered QW [25] also enlarge the range of QW dynamics.

3. Parrondo’s game

Standard form of Parrondo’s game involves games of chance. Two games, A and B , when played individually, produce a losing ex-
pectation. An apparently paradoxical situation arises when the two games are played in an alternating order, a winning expectation is
produced [39,38,45,40]. The apparent paradox that two losing games A and B can produce a winning outcome when played in an al-
ternating sequence was devised by Parrondo as a pedagogical illustration of the Brownian ratchet [55]. However, Parrondo’s games have
important applications in many physical and biological systems, combining processes lead to counterintuitive dynamics. For example, in
control theory, the combination of two unstable systems can cause them to become stable [56]. In the theory of granular flow, drift can
occur in a counterintuitive direction [57–59]. Also, the switching between two transient diffusion processes in random media can form a
positive recurrent process [60].

A brief analysis of Parrondo’s paradox can be done by considering two games, A and B . Game A can be thought of as a simple coin
tossing one, such that a win (say heads of the coin) occurs with a probability P and a loss (say tails of the coin) occurs with a probability
(1 − P ). The scenario where A is loosing could be thought of as a game involving weighted coins. Game B is more involved in that it
is a capital dependent game, with the game strategy dependent upon the initial capital available with the player. It is possible to devise
situations wherein both the games are individually loosing, but a randomized combination of the two results in a winning game. This was
shown in [39] using Markov chain theory.
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Fig. 1. Pictorial illustration of the conditions for the player to be declared winner.

Fig. 2. Spread of probability distribution after implementing 100 steps of DTQW using different values for the coin parameters of player A, B A
ξ,θ,0 [(a) and (c)] and player B ,

B B
0,θ,ζ [(b) and (d)]. Parameter ξ in B A

ξ,θ,0 shifts the distribution to the left: (a) = ( π
6 , π

6 ,0) and (c) = ( 5π
12 , π

3 ,0), P L > P R . Parameter ζ in B B
ξ,θ,ζ shifts the distribution to the

right: (b) = (0, π
6 , π

6 ) and (d) = (0, π
3 , 5π

12 ), P R > P L . The initial state of the particle used for the walk is |Ψins〉 = 1√
2
(|0〉 + i|1〉) ⊗ |ψ0〉.

4. Parrondo’s game using DTQW

Here we present a novel scheme of a game in the setting of a DTQW, viz., one in which two players A and B use different quantum
coin operators to walk on a single particle. Multiple coin DTQWs have been studied before [61] and the effect of various coin parameters
has been studied by [62]. Both these features have been examined together in the form of Parrondo’s game for the first time here, to the
best of our knowledge. This could have impact on the studies of directed phenomena such as ratchets on DTQWs.

To construct a Parando’s game like situation using DTQW on a line, we will consider two players A and B , as shown pictorially in
Fig. 1, and construct the game as follows:

• Both the players A and B are given different quantum coin operations B A
ξ,θ,0 and B B

0,θ,ζ with two non-zero variable parameters each and a
common shift operator S to evolve DTQW.

• Initial state of the particle at the origin, x = 0 on which they have to evolve the walk should be, |Ψins〉 = 1√
2
(|0〉 + i|1〉) ⊗ |ψ0〉.

• Player A is considered a winner if the probability of finding the particle to the right of the origin, P R , is greater than the probability to the left
of the origin, P L , that is, P R > P L after t number of steps of DTQW evolution. Similarly, player B is considered a winner if P L > P R after t
number of steps of DTQW evolution. If both the players A and B together manage to maintain equal probability on both the sides, P L = P R , they
are declared as joint winners.

From Section 2, we know that Wξ,θ,ζ = S(Bξ,θ,ζ ⊗ 1) on |Ψins〉 implements one step of DTQW. This will evolve the particle to

Wξ,θ,ζ |Ψins〉 = 1√
2

[(
eiξ cos(θ) + ieiζ sin(θ)

)|0〉 ⊗ |ψ−1〉 + (+e−iζ sin(θ) − ie−iξ cos(θ)
)|1〉 ⊗ |ψ+1〉

]
. (5)

The position probability distribution from Eq. (5), after the first step, corresponding to the left and right positions are 1
2 [1± sin(2θ) sin(ξ −

ζ )]. These probability distributions would be equal and lead to a left–right symmetry in position, if and only if ξ = ζ . That is, the
parameters ξ 
= ζ introduce asymmetry in the position space probability distribution from the first step itself. The effect of different
values of coin parameters after 100 steps of walk is shown in Fig. 2 plotted using numerically obtained values. We thus find that the
generalized operator Bξ,θ,ζ as a quantum coin can bias the probability distribution of the quantum walk in spite of the symmetry of
initial state of the particle. This is the key point in developing a winning strategy for Parrondo’s game using DTQW.
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Fig. 3. Spread of probability distribution after implementing 100 steps of DTQW using different values for the parameter using operation W B A
ξ,θ,ζ , that is, player A and B using

both of their coins for each step of the walk. If player A chooses ξ < π/2, player B can emerge as solo winner if he chooses ζ > ξ . If player B chooses ζ < ξ , player A will
emerge as solo winner. However, joint winning can be ensured if player A chooses ξ = π/2 irrespective of any parameter player B chooses for his coin operation. The initial
state of the particle used for the walk is |Ψins〉 = 1√

2
(|0〉 + i|1〉) ⊗ |ψ0〉.

From the preceding analysis, Eq. (5) and Fig. 2 we know that DTQW with B0,θ,0 on a particle in state |Ψins〉 results in a symmetric
distribution. For 0 < ξ � π/2 when ζ = 0 using player A’s coin B A

ξ,θ,0, the distribution results in asymmetry with P L > P R . Therefore,

player A can never win a game with the given quantum coin. Similarly, for 0 < ζ � π/2 when ξ = 0 using player B ’s coin B B
0,θ,ζ , the

distribution results in asymmetry with P R > P L . With increase in ξ and ζ , the difference between P R and P L also increases.
Therefore, both players A and B can never win a game independently with the given quantum coins B A

ξ,θ,0 and B B
0,θ,ζ .

We should note that even though coin B A
ξ,θ,0 or B B

0,θ,ζ contribute for asymmetry, the variance of the walk does not deviate much from
the variance of the symmetric distribution [51]. This is because the variance of the walk largely depend on the value of θ and the value
of θ is same for both the players. This is a genuine game and results from this are not any convention dependent.

5. Winning strategy

Here we discuss our simple scheme of the winning strategies of the game on a DTQW. The winning strategies are developed making
use of the different coin operators. The parameter ξ , θ and ζ are physically realizable rotations on the two state system [51] and hence
restrictions on the rotational degree of freedom lead to situations presented here. We believe this to be a new and simple way of
implementing a game on a DTQW.

For the game presented in Section 4, players emerging as joint winners, that is, with P L = P R will be a ideal situation. To emerge
as joint winners, the players have to first coordinate between them. They can coordinate at two levels, first level coordination is by
alternatively using their coins for each step of the walk, if they are sure that the winner is decided after even number of steps of walk
evolution or by using both of their coins, one after the other for every step of the walk. Second level of coordination is to consult each
other in choosing the quantum coin parameters ξ and ζ (θ is common for both). First level of coordination is a necessary condition for
the players to emerge as winners and hence they are always given that choice. Players are not always allowed to coordinate at the second
level but they can still emerge as winners.

First we will discuss the strategy when both the players agree to cooperate at both the levels, followed by the strategy when they have
allowed only for first level of coordination.

5.1. Players A and B are allowed to consult each other and the winner is decided after even number of steps of walk evolution

A simple strategy for players A and B will be to cooperate between themselves for choosing the coin parameter and emerge as joint
winners. This can be achieved if both the players agree:

1. To use same value for ξ and ζ in their respective coins;
2. Use their coins for every alternative step such that their coins are equally used.

The evolution can be written as

W B
0,θ,ζ W A

ξ,θ,0 · · · W B
0,θ,ζ W A

ξ,θ,0|Ψins〉, (6)

or

W A
0,θ,ζ W B

ξ,θ,0 · · · W A
0,θ,ζ W B

ξ,θ,0|Ψins〉, (7)

where W A
ξ,θ,0 = S(B A

ξ,θ,0 ⊗ 1) and W B
0,θ,ζ = S(B B

0,θ,ζ ⊗ 1).
If the number of steps is odd, the player who uses his coin operation one time more than the other will narrowly lose the game. We

will discuss the strategy for a walk with odd number of steps later.
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5.2. Players A and B are not allowed to consult each other and the winner is decided after even number of steps of walk evolution

When both the players are not allowed to consult each other to choose the coin parameters ξ and ζ , a loosing situation may arise for
both the players. To illustrate this further, if player A chooses some value for parameter ξ , the winner of the game depends on the choice
of parameter ζ by player B . If player B chooses parameter ζ < ξ , player B will emerge as a winner over the player A and if player B
chooses ζ > ξ , player A will emerge as a winner over the player B . However, a player can make a careful choice of his coin parameter and
make sure that he either wins the game alone or emerge as joint winner if the other player is also equally careful. This can be achieved
by choosing the lowest non-zero values (initial rule of the game) for the coin parameters ξ and ζ of the respective players. For example,
player A choosing ξ = ε , ε being the smallest possible value greater than zero allowed in the coin operation, will make sure that player
A wins if player B choose ζ > ε or will emerge as joint winner if player B also choose ζ = ε .

5.3. When the winner is decided after t (even or odd number) steps of walk

From the preceding two strategies we know that if the winner is decided after even number of steps of QW, both the players can
emerge as joint winners. If the winner is decided after odd number of steps, the player who started the game by using his coin first will
narrowly lose the game. Knowing this, if the players are not told of when the winner will be decided, none of them will agree to start
the game. In this case they can agree upon a new strategy of using both of their coins for each step of the walk such that both of them
would have used their coins equally when the winner is decided.

The evolution can be written as

W B A
ξ,θ,ζ · · · W B A

ξ,θ,ζ W B A
ξ,θ,ζ |Ψins〉, (8)

or

W AB
ξ,θ,ζ · · · W AB

ξ,θ,ζ W AB
ξ,θ,ζ |Ψins〉, (9)

where

W B A
ξ,θ,ζ = S

(
B B

0,θ,ζ ⊗ 1
)(

B A
ξ,θ,0 ⊗ 1

) ≡ S

[(
eiξ cos2(θ) + eiζ sin2(θ) sin(θ) cos(θ)[1 − ei(ζ−ξ)]

sin(θ) cos(θ)[e−i(ζ−ξ) − 1] e−iζ sin2(θ) + e−iξ cos2(θ)

)
⊗ 1

]
, (10)

and

W AB
ξ,θ,ζ = S

(
B A

ξ,θ,0 ⊗ 1
)(

B B
0,θ,ζ ⊗ 1

) ≡ S

[(
eiξ cos2(θ) + e−iζ sin2(θ) sin(θ) cos(θ)[ei(ζ+ξ) − 1]

sin(θ) cos(θ)[1 − e−i(ξ+ζ )] e−iζ sin2(θ) + e−iξ cos2(θ)

)
⊗ 1

]
. (11)

Action of W B A on |Ψins〉 results in symmetric distribution only for some specific values of ξ and ζ together. If player A chooses some
0 < ξ < π/2, player A (B) can emerge as a solo winner if player B chooses ζ < ξ (ζ > ξ ). Following Eqs. (10) and (11), one can guarantee
that the player who starts the game can choose a parameter of the coin such that he always wins, either as solo winner or joint winner.
For player A starting the game, picking ξ = π/2 will ensure a joint winning situation even if player B tries to fix ζ 
= ξ ( θ = π/4 is kept
the same for both the players). For player B starting the game, picking ζ = π/2 will ensure a joint winning situation even if player A tries
to fix 0 < ξ < π/2 (note that ξ 
= π/2, as it will lead to an initial state without shifting to either left or right). In Fig. 3, we have show
the winning strategy for walk using W B A

ξ,θ,ζ , Eq. (10).

6. Conclusion

Superior performance of quantum strategies is usually seen, if entanglement is present. In the context of DTQW, this is natural as the
walk evolves by entangling the coin and position degrees of freedom. Therefore, making use of the above, and the fact that the walk can
be manipulated by varying the parameters in the quantum coin operation, we presented a scheme for a quantum game using DTQW in the
form of Parrondo’s game. Our system involves two players A and B as quantum coin operators to evolve DTQW on a line. We presented a
situation where both the players are unable to manipulate a walk to an extent to win a game using their coins individually. We presented
a quantum strategy for the players to cooperate by using their quantum coin operations alternatively and emerge as joint winner for
situations where it is conditioned that the winner is decided only after even number of steps of walk evolution. A different joint winning
strategy, by using their coins in combination for each step, is presented for situations where the time (after even or odd number of steps)
when the winner will be decided is not known. When both the players are equally careful in choosing their parameters, they can always
emerge as joint winners and only a less careful player will be prone to lose the game. Our scheme has fixed a specific initial state for
the particle on which the walk is evolved and different coins are allotted to players A and B accordingly. One can choose any initial state
for the particle, for example, |0〉 or |1〉 or any of its linear combination and different coins and strategies for player A and B can be
worked out. Parameters ξ, θ and ζ are physically realizable rotations on the two state quantum system [51,53] and hence restrictions on
the rotational degrees of freedom lead to situations presented in this Letter. These strategies, leading the players to emerge as joint or
solo winners can be very useful for various physical situations. For example, to arrive at equilibrium (equal on both side of origin), or any
non-equilibrium (towards one side) configuration in the probability distribution as required during its application for algorithms or other
physical process such as ratchets.

The causal structure of QW evolution, as shown recently [63], puts in perspective the nature of quantum information processing in-
volved in a quantum Parrondo’s game using QW, in that it provides an upper bound on the propagation of quantum effects of interference
and superposition. The effect of a noisy input to a quantum game has been studied and it is known that a suitable level of noise can
enhance the payoff to the players. In this context, it was noted [64] in a study of the effect of decoherence (a form of noise due to
interaction of the system with its environment) on a quantum game analogous to a three-player duel, that the boundary in the parameter
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space, in a transition from the quantum to classical (by increasing the influence of noise), changes from convex in the quantum case to
linear in the classical one. This is of interest since convexity is thought to be the basis for Parrondo’s paradox.

As discussed in the introduction, Parrondo’s games were devised, originally, to provide a mechanism to harness Brownian motion
and convert it to directed motion. In conclusion, causal structure of QW evolution, effect of decoherence on Parrondo’s game using QW
evolution can provide a mechanism to harness QW evolution for various quantum information processing tasks and other applications.
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