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Abstract We present an investigation of many-particle quantum walks in systems
of non-interacting distinguishable particles. Along with a redistribution of the many-
particle density profile we show that the collective evolution of the many-particle sys-
tem resembles the single-particle quantum walk evolution when the number of steps
is greater than the number of particles in the system. For non-uniform initial states
we show that the quantum walks can be effectively used to separate the basis states
of the particle in position space and grouping like state together. We also discuss a
two-particle quantum walk on a two-dimensional lattice and demonstrate an evolution
leading to the localization of both particles at the center of the lattice. Finally we
discuss the outcome of a quantum walk of two indistinguishable particles interacting
at some point during the evolution.

Keywords Distinguishable many particles - Indistinguishable two-particles -
Quantum walks - Discrete-time quantum walk

1 Introduction

The idea of a quantum walk, the quantum analog of the classical random walk, dates
back to 1958 [1] and 1965 [2] but the concept was formally developed only in 1990s
[3-5]. In a one-dimensional situation a quantum walk evolving in position space
spreads quadratically faster than its classical counterpart, due to the interference of
amplitudes of the multiple paths [6,7]. This was found to have interesting applications
in quantum information theory, allowing for efficient quantum algorithms [8—11].
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However, quantum walks have also been shown to be useful for coherent quantum
control over atoms and quantum phase transitions [12], to explain breakdown phe-
nomena in electric-field driven systems [13], to give direct experimental evidence for
wavelike energy transfer within photosynthetic systems [14, 15], to generate entangle-
ment between two spatially separated system [16] and to generate topological phases
[17]. Experimental implementation of quantum walks have been reported using nuclear
magnetic resonance (NMR) [18, 19], continuous tunneling of light fields through wave-
guide lattices [20], the phase space of trapped ions [21,22], single optically trapped
neutral atoms [23] and single [24,25] and two-photon systems [26,27]. All of these
advances have made the area of quantum walks a very promising tool, just like its
classical counterpart.

Quantum walks are widely categorized into two forms, namely, continuous-time and
discrete-time walks. In this article we will discuss the discrete-time quantum walk and
in particular we will focus on the quantum walk in a system of distinguishable particles.
In Sect. 2 we will define the distinguishable non-interacting many-particle quantum
walk and discuss the dynamics and some of the results of the collective evolution of the
many-particle system. We will show that for an evolution in which the number of steps
is greater than the number of particles, the collective probability distribution resembles
the single-particle probability distribution. This can be efficiently used for separating
the different basis states of the many particle system and grouping them together in
position space even when the initial states of the particles are a randomized superpo-
sition of state. We also discuss the physical relevance of the study. In Sect. 3, we look
at the dynamics of a two-particle quantum walk and show that it is possible to localize
the joint probability at the center of the lattice. We also look into the joint probability
of the indistinguishable, both boson and fermion two-particle quantum walk evolution
when the particle meet in the lattice after the walk evolution. We conclude in Sect. 4.

Though the review articles in this special issue introduce the concepts of quantum
walks in great detail, we will briefly discuss the main features of the quantum walk
evolution which will be relevant for this article here for self-consistency reasons.

The discrete-time quantum walk of a single two-state particle in one-dimension is
defined on a Hilbert space H = H. ® H,, where H, is the coin Hilbert space with
the basis state described in terms of the internal state of the particle, | |) = |:(1)] and
| M) = [(1):| The position Hilbert space, H,, has the basis states [/;), where j € I
is a set of integers associated with each lattice site. Each step in the evolution of the
walk is described using a quantum coin operation

cos(f)  sin(0)
B@) = ( sin(9) — cos(e)) )

which evolves the particle into a superposition of the internal basis states and which
is followed by the unitary shift operator

S= O VAT W) Wil +1 DA 1@ W) (yl] 2
J
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which transforms the state of the particle into a superposition in position space. There-
fore, the full operation for each step of the quantum walk on the Hilbert space H. @ H ,
can be written in the form

W©) = SIBE) @ 1], 3
and the state after ¢ steps of evolution is given by
W) = WO |Win). ©
Here
[Win) = (cos/2)] 4) + 7 sin(3/2)| 1)) © 9o), 5)

is the initial state of the particle at a position j = 0. The coin parameter 6 controls the
variance of the probability distribution of the walk [6,7,28,29] and the probability to
find the particle at site j after ¢ steps is given by P(j, 1) = (y;|tre(|W,) (W, D).

2 Distinguishable many-particle quantum walk

Many particle quantum walks are fundamentally different for systems of non-interact-
ing distinguishable and indistinguishable particles. For the first one, the evolution of
the walk can be straight forwardly predicted by considering many single-particle quan-
tum walks [12,32], whereas for the latter one many particle interference effects, based
on the bosonic or fermionic nature of the particles, strongly influence the evolution
and makes it computationally hard to study [30,31].

Though the evolution of distinguishable particles does not involve many-particle
interference effect, the collective behavior of the single particle interference effects
can reveal interesting features of the systems dynamics. Such systems can be approxi-
mately realized in cold, but thermal samples of neutral atomic gases in optical lattices
[23], which can be engineered to minimize the atom-atom interaction and dynam-
ically control the atom transport [33-35]. Therefore, they have been suggested for
observation of quantum phase transitions [12] or for generation and control over spa-
tial entanglement between different lattice sites [32]. Another interesting question is
the exploration of the meeting probabilities and meeting times of many-particles at
pre-defined positions (see Ref.[36] for two particle meeting probabilities).

In this section we will define the non-interacting distinguishable many-particle
quantum walk and discuss some of the interesting outcomes from the collective evo-
lution. To define a simple form of distinguishable many-particle quantum walk in
one-dimension, we will consider a system of M non-interacting particles, where ini-
tially exactly one particle occupies a lattice site and every particle has its own coin
and position Hilbert space, H = (’HC ® ’Hp)®M. If the number of particles is odd,'
the initial state can be written as

1 To have symmetry in labeling the position space we have chosen an odd number, however all results hold
for even number of particles as well.
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=" ,
wii- @ [(HE5)ewa]. ©®

which, after ¢ steps, will evolve into

j

_M-1
J="7 .
L) +il 1)
M)y = w®eM’ [(— ® [y |- )
i V2
J=TT
Here W (6)®M is the evolution operator for each step of the walk, which will evolve
each particle into the superposition of its neighboring positions, establishing the quan-

tum correlation between the particle and the position space. After ¢ steps, these cor-
relations overlap resulting in,

@
(W @)2M 1wy o A D)@ 1Wj—) +Ajip1l 1) @ 1¥j—r41)
j==¥rt
Foeeees +Ajel 1) ® [¥j41)
B | D)@ Yj—r) + e + Bl 1) @ 1Y+l (8)
which can be written as
M it .
WO ) o Q) | D TAT WD+ BN ) | - ©)

. M—1 =j—
=== \¥=J

Here A] and B{ are the probability amplitudes of the state | |) and | 1) of each of
the particles initially at position j at the new position x, which range from (j — ¢) to
(j + 1) after the ¢ step walk.

The probability distribution after ¢ steps is given by the sum of the probabilities at
a given lattice site of each particle k

M
P(j, )= Pi(j. 1) (10)

k=1

and the effective probability distribution for different numbers of steps is shown in
Fig. la. As expected, after ¢ steps of the quantum walk, the M particles are spread
between (M — t) and (M + t). In Fig. 1b the asymmetric probability distributions
resulting from all particles being initially in state | |) or | 1) after 500 steps are shown.
From Fig. la, b, it is clearly evident that when ¢ > M the probability distribution
profile of M particles resembles the single-particle profile. From earlier studies of
single-particle quantum walks of ¢ steps on a particle initially at position j = 0 using
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(a) (b) 04 ;
— 25 steps " o ~
0.8 - 50 steps 03 i fnftfal state = \T>
= 100 steps = ; +- initial state = || >
Z 06 300 steps H
8 — 500 steps S o2
° 04 o
o o
0.2 0.1
0 ' = ' 0
-500 0 500 -525 -400 -200 0 200 400 525
Position Position

Fig.1 Probability distribution of 51 particles initially located individually at positions j = —25to j = +25
after the quantum walk evolution using using the Hadamard operator B(rr/4) as the quantum coin. a The
initial state of all the particles is %(\ ) +i| 1)) and evolves in position space. The spread of the distri-

bution with an increasing number of steps is clearly visible. b Initially all particles are either in state | |)
or state | 1) and subsequently subjected to the quantum walk of 500 steps. For all the particle in the initial
state | | ), the distribution with peak on the left is obtained and for all the particle in the initial state | 1),
the distribution with peak on the right is obtained (color online)

B0 as the quantum coin it is known that the probability distribution spreads over the
interval (—f cos(0), t cos(f)) in position space and decays quickly outside this region
[7,29]. For an M particle system the peak of the effective probability distribution is
given by contributions from the probability of all M particles and therefore located at
F[t cos(0) — M/2].

Apart from all particles being initially in the symmetric superposition state of | |,)
and | 1) [see Eq.(6)], one can also consider a situation of antiferromagnetic ordering
(see Fig. 2a), where two neighboring particles are in opposite states. In Fig. 2b we

(a) 10> 0> 1> n>
L ¢ | 4 | 4 | 4 | 4 | +
e I o T ¢« 1 ¢« 1 « 1T & |

_
O
'

H
EEV TR

Position

Fig. 2 a The initial state has an antiferromagnetic ordering with neighboring particles being in different
internal states. b Probability distribution of 51 particles, initially in the state shown in (a) with one particle
in each position ranging from j = —25to j = +25, after a quantum walk of different number of steps
using the Hadamard operator B(sr/4) as the quantum coin. Lower parts in the left (right) of the distribution
are due to the low contribution of state | |) (| 1)) from the particle initially in state | 1) (| |)) (color online)
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show the final probability distribution for this situation after a different number of
steps. Though each particle undergoes an asymmetric evolution with the states | |)
moving left and the states | 1) moving right, the collective distribution is symmetric
due to equal number of particles initially in both states.

Many-particle quantum walks of particles initially in antiferromagnetic order orin a
completely randomized initial state are very useful for separating different basis states
of the particles in position space and grouping them together. Using a different angle
0 in the quantum coin operation one can find different outcomes for the probabilities
of basis states grouped after the evolution of the quantum walk. To demonstrate this
we will consider the examples of a single-particle initially in one of the basis state.

A quantum walk of a single particle initially in state | |) (or equivalently | 1))
using a Hadamard coin (8 = m/4) results in constructive interference towards the
left (right) of the origin and therefore localizes all particles with high probability on
the left (right) of the origin. To understand this, let us look at the analytic form of
the evolution after ¢ steps using B(@) as coin operator. The state after ¢ steps can be
written as

t
WO) |Wing) = W (1)) = Z (Ajel D))+ Bjol DY) (1)

j=—t

where A; ; and B, are given by the coupled iterative relations

Aj,z
Bj,t

cos(0) Ajt1,1—1 + sin(0)Bjy1,1—1 (12a)
—COS(Q)Bj_lJ_] + sin(@)Aj_l,,_l. (12b)

Straightforward algebra allows to decouple these equations at the price of a time-
dependence on the previous two steps

Aj=co8(0) (Ajr1—1 — Aj—1-1) — Aji—2 (13a)
Bj.: = cos(®) (Bjt1,i—1 — Bj—1,1—1) — Bj.1—. (13b)
By repeating this process of substitution one can find an expression linking .4; ; and
B to the amplitude of the initial state of the particle and the angle, 0, of the coin

operation. Therefore, the expression for the total probability of finding the particle in
state | ) and | 1) after time ¢ is

Py = X 1A (14a)
J

Piyy(0) = 2 1Bl (14b)
J

To obtain a spatially symmetric probability distribution for a particle initially in sym-
metric superposition state, the walk should be invariant under an exchange of |0) <
[1), and hence should evolve A; ; and B; ; alike (as, for example, the Hadamard walk
does [37]). From the above analysis we see that A j,r and B‘,‘,, are symmetric to each
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Fig. 3 Probability of finding a particle in state | |) of a single-particle walk with increasing number of

steps if the particle was initially in state | | ). For small values of 6 the probability of finding the particle in
state | | ) is larger than for larger value of 6 (color online)

other and evolve alike for all value of 6 only when the initial state of the particle is
a symmetric superposition state. When the initial state is | | ), the walk will evolves
with constructive interference towards left and destructive interference to the right,
(exact form depending on the value of #) and vice versa when the initial state is
| 1). The associated probability amplitudes oscillate strongly between the left and the
right hand side for small numbers of steps and stabilize for longer times. This can
be seen in Fig. 3 and also directly from Eq. (13) when realizing that the amplitude at
each position oscillates and the range of oscillation reduces as the amplitude at each
position decreases over time [42].

For a particle initially in state | |,) a smaller value of 6 returns a high probability of
finding the particle in state | |) but if the initial state is | 1) the probability of finding
the particlein | | ) will be very low. We should also note that a small probability of state
| 1) (] 1)) is present along with the state | |) (] 1)) to the left (right) of the origin but
that will not alter the trend. From the above analysis we can conclude that an initially
randomized many-particle state can be efficiently sorted in position space with respect
to its basis states. This in turn allows to create an ordered state with high probability.

To demonstrate this we show in Fig. 4a the probability distribution for different
values of 8 for a sample of 51 particles after 200 steps when the initial state of all the
particles was | |) and Fig. 4b shows the same for an initial state of | 1). A strong
asymmetry is visible for both cases. In contrast, the probability distribution shown in
Fig. 4c assumes that the initial state of each particle was randomly chosen from | | )
and | 1) and the anisotropy in the final distribution vanishes. From Fig. 4a, b one can
also see that for increasing 6 the probability distribution widens and its maximum
amplitude decreases.

3 Joint probability of two-particle quantum walk
Two-particle quantum walks have been studied from various perspectives [38—41]

and first experimental implementations have recently been reported [22,26]. Here we
will discuss the probability distribution of a quantum walk using two distinguishable
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Fig. 4 Probability distribution of 51 particles after 200 steps for different values of 6. The states | | ) walk
to the left and the states | 1) to the right. In a the initial state of all particle was | |) and in b the initial state
of all particle was | 1). In ¢ the initial state of each particle is randomly choose from | |) and | 1) (color
online)

particles on a two-dimensional lattice and present a protocol to increase the meeting
probability of the two particle at a particular lattice after a particular time. We then
compare this to the quantum walk evolution of two indistinguishable particles which
only interact at the end of a certain number of steps.

To define a two-particle quantum walk we will consider a two-dimensional square
lattice and label the two axis as X and Y such that (x, y) represent a position on the
lattice. We will consider two particles initially in state | ) at diagonally opposite
points (0, 0) and (j, j),

2o =[hewen]e[ld) el n]. (15)

where j is the length of the lattice, which has j x j positions. The shift operator for
the quantum walk evolution is defined separately for both particles in such a way that
they evolve towards each other,

S1= [T @ Wt y) Wyl + 1D 1@ W, y+1) (W, 1]

X,y

@ Springer



Distinguishable non-interacting many-particles and indistinguishable two-particle

=3O 1@ 1Wae—1,y) Wy + 1 DA TR [Way—1) (Wayl]. (16)

X,y

Each step of the evolution can be implemented by W>(0) = [B(0) ® $11Q[B(6) ® $>]
and after ¢ steps the state is given by

[Wa()]'[W2,) ={[BO) @ $i1® [BO) @ 1Y {Il 1) ® [Yo.0) 1 @[] 1) ® [ )1}
(17)

The two particles meet each other for the first time after t = j steps and the meeting
probability at each position is different for the distinguishable and indistinguishable
case.

Two distinguishable particles: In this case the joint probability of the two particles
at each position at the time of meeting each other is the sum of the probabilities of
both individual particle. In Fig. 5a we show this distribution for both particles after
t = j/2 = 10 steps on a 20 x 20 lattice. The first time the two distributions overlap is
att = 20 where they spread along the diagonal of the lattice (not shown). If, however,
we introduce a one time bit-flip operation, o, at t=j/2=10,

[W(0)2212[0, ® o, JIW (6)22/2 W2, ) (18)

one can see from Fig. 5b that the evolution can be reversed, which leads to localization
of both the particles in the center of the lattice at time ¢ = j with a good probability.

Two indistinguishable particle: If the two particles are indistinguishable, their prob-
ability distributions interfere when they overlap at the same position in the lattice.
For bosons the allowed states at each position in the lattice are | ||), | 11) or
| 41) = | 1), whereas for fermions these are restricted to | | 1) = | |1). The
probabilities for these states to be obtained at each position at time ¢ are then given
for bosons as

2 b 2
|A‘;,t| |Aj,t|

Pli . (19a)

DS IAY P AG P 1B 2 1B 2 A 12 1BE 2 AG 2B 2

Fig. 5 Probability distribution of two distinguishable particles on a two-dimensional lattice using B(rr/4)
as quantum coin operation. a Joint probability distribution of two particles staring at (0, 0) and (20, 20)
with initial states | |) after 10 steps. b Localization of two-particle probability distribution at the center of
the lattice after a one time bit-flip operation on both particles at t = j/2 was introduced (color online)
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a |2 b 2
|Bj,l| .|Bj,t|

i
0 =5 1A LA, 1B, 18, P A (6 P A B
JUAG A A P 715 R R

2 b 2 b 2 2
pl = AT 1B 17+ AT 17 - 157, (19¢)
TS Y 2 A P18 2 1BY P IAG 2187 2R AT 218 2]

Here A¢ and A” are the amplitudes of the particles a and b to be in state | |), and
B% and B are the amplitudes to be in the state | 1). We show these probabilities two
particles initially at (0, 0) and (20, 20) and meeting after evolving for 20 steps of walk
using Eq.(17) in Fig. 6a—c.

If the particles are fermions the probability of finding the two-particle in the only
possible state at each positions is

a |2 b |2 b 2 a (2
pi |AS 17 1B 17+ 1A 17 - 1B 20)

VDS LAY 2B 2 4 AR 2 1B P

Fig. 6 Quantum walk on a two-dimensional lattice for two indistinguishable bosons initially at (0, 0) and
(20,20) in | || ) and interacting via oy after 20 steps using B(x/4) as the quantum coin operation. The
probabilities for finding the particles in the statea | | |) b | 11) and ¢ | | 1) are shown at r = 20. The
relative height of the final distributions however can be shown to depend on the initial state (color online)
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¥ - 20

Fig. 7 Probability distribution of finding the two fermions staring at (0, 0) and (20, 20) with initial states
| J) and interacting with oy after 20 steps of quantum walk on a two-dimensional lattice using B(w/4) as
quantum coin operation. The state | |, 1) is the only possible state for fermions (color online)

which is shown in Fig. 7 for the same parameters as in the bosonic case above. The
difference to the bosonic case is clearly visible. Using different initial states of the
particle or different coin operations during the evolution will of course alter the prob-
ability distribution. Introducing a one time bit-flip operation half way through the
evolution for indistinguishable particles as we did for distinguishable particle will
lead to localization of the join probability at the center (not shown).

From this one can see that even a one time particle-particle interaction in an indistin-
guishable many-particle quantum walk can result in different probability distributions
which might be useful for applications in quantum information and other fundamen-
tal quantum mechanical experiments. With the possibility of increasing the number
of steps, the number of particles and the number of time the particle-particle inter-
action is introduced, the evolution gets even more interesting and complicated, but
becomes computationally difficult. Recently,for the case of two atoms in an optical
lattice performing a quantum walk with interactions via cold collisions the appearance
of a bound state has been predicted [43], which gives scope for further exploration of
the dynamics using our approach for many-particle system by introducing interactions
at regular intervals.

4 Conclusion

We have presented a number examples of quantum walk dynamics of many-particle
system with different initial states of the particles. Though the distinguishable many-
particle quantum walk dynamics does not involve many-particle interference during
the evolution we have shown that it can be effectively used to separate the eigenstates
of the particles position space and group them together. We have also presented an
example of two-particle quantum walk dynamics with defined interaction that can
lead to localization of two distinguishable particles at the center if they start their walk
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from opposite ends of the lattice. Extending this scheme to indistinguishable boson
and fermion pairs results in the different probabilities for finding the two particles in
the allowed combination of states. Recent experimental developments in implement-
ing quantum walks and using quantum walk models to simulate and understand some
of the dynamics process in nature suggests that collective dynamics of many-particle
system will very useful for further studies.
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