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Abstract

We study the decoherence effects originating from state flipping and
depolarization for two-dimensional discrete-time quantum walks using four-
and two-state particles. By comparing the quantum correlations between the
two spatial (x —y) degrees of freedom using measurement-induced disturbance,
we show that the two schemes using a two-state particle are more robust against
decoherence than the Grover walk, which uses a four-state particle. We also
show that the symmetries which hold for two-state quantum walks break down
for the Grover walk, adding to the various other advantages of using two-state
rather than four-state particles.

PACS numbers: 03.67.Ac, 03.65.Yz, 03.67.Mn

(Some figures may appear in colour only in the online journal)

1. Introduction

Quantum walks are a close quantum analogue of classical random walks, in which the evolution
of a particle is given by a series of superpositions in position space [1-5]. They have now
emerged as an efficient tool to carry out quantum algorithms [6, 7] and have been suggested
as an explanation for wavelike energy transfer within photosynthetic systems [8, 9]. They
have applications in the coherent control of atoms and Bose—Einstein condensates in optical
lattices [10, 11], the creation of topological phases [12] and the generation of entanglement
[13]. Quantum walks therefore have the potential to serve as a framework to simulate, control
and understand the dynamics of a variety of physical and biological systems. Experimental
implementations of quantum walks in the last few years have included NMR [14-16], cold
ions [17, 18], photons [19-24], and ultracold atoms [25], which has drawn further interest
from the wider scientific community.
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The two most commonly studied forms of quantum walk are the continuous-time [26] and
the discrete-time evolutions [5, 27-32]. In this paper we focus on the discrete-time quantum
walk, which we call the ‘quantum walk’ for simplicity. If we consider a one-dimensional (1D)
example of a two-state particle initially in the state

|Win) = (cos(8/2)0) + € sin(8/2)I1)) ® [¥o), (D

then the operators to implement the walk are defined on the coin (particle) Hilbert space H,
and the position Hilbert space H, [H = H. ® H,]. A full step is given by first using the
unitary quantum coin

A _ | cos(@)  sin(8)
B®) = [sin(e) —cos(e)]’ &
and then following it by a conditional shift operation
Se= ) 110)(01® [Yum1) (Wl + D (1 @ [Wrasr) (Yl (3)
X
The state after ¢ steps of evolution is therefore given by
W) = [SB(6) ® 111 | Win). )

All experimental implementations of quantum walks reported by today have used effectively
1D dynamics. A natural extension of 1D quantum walks to a higher dimension is to enlarge
the Hilbert space of the particle with one basis state for each possible direction of evolution
at the vertices. Therefore, the evolution has to be defined using an enlarged coin operation
followed by an enlarged conditioned shift operation. For a two-dimensional (2D) rectangular
lattice the dimension of the Hilbert space of the particle will be four and a four-dimensional
coin operation has to be used. Two examples of this are given by using either the degree
four discrete Fourier operator (DFO; Fourier walk) or the Grover diffusion operator (GDO;
Grover walk) as coin operations [33-35]. An alternative extension to two and higher (d)
dimensions is to use d coupled qubits as internal states to evolve the walk [36, 37]. Both these
methods are experimentally demanding and beyond the capability of current experimental
set-ups. Surprisingly, however, two alternative schemes to implement quantum walks on a
2D lattice were recently proposed that use only two-state particles. In one of these a single
two-state particle is evolved in one dimension followed by the evolution in other dimension
using a Hadamard coin operation [38, 39]. In the other, a two-state particle is evolved in one
dimension followed by the evolution in the other using basis states of different Pauli operators
as translational states [40, 41].

In this paper we expand the understanding of 2D quantum walks by studying the effects
decoherence has on the four-state Grover walk and the two two-state walks mentioned above.
The environmental effects are modelled using a state-flip and a depolarizing channel and
we quantify the quantum correlations using a measure based on the disturbance induced by
local measurements [42]. While in the absence of noise the probability distributions for all
three schemes are identical, the quantum correlations built up during the evolutions differ
significantly. However, due to the difference in the size of the particles’ Hilbert space for the
Grover walk and the two-state walks, quantum correlations generated between the particle
and the position space cannot be compared. The quantum correlations between the two spatial
dimensions (x — y), obtained after tracing out the particle state, however, can be compared and
we will show that they are larger for the walks using the two-state particles. When taking the
environmental effects into account, we find that all three schemes lead to a different probability
distribution and that decoherence is strongest for the Grover walk, therefore making the two-
state walks more robust for maintaining quantum correlations. Interestingly, we also find that
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certain symmetries which hold for the two-state quantum walk in the presence of noise do not
hold for a Grover walk. Together with the specific initial state and the coin operation required
for the evolution of the Grover walk, this reduces the chances of identifying an equivalence
class of operations on a four-state particle to help experimentally implement the quantum walk
in any physical system that allows manipulation of the four internal states of the coin.

This paper is organized as follows. In section 2 we define the three schemes for the 2D
quantum walk used to study the decoherence and in section 3 we define the measure we use
to quantify the quantum correlations. In section 4, the effect of decoherence in the presence
of a state-flip noise channel and a depolarizing channel are presented and we compare the
quantum correlations between the x and y directions for the three schemes. Finally, we show in
section 5 that the state-flip and phase-flip symmetries, which hold for the two-state quantum
walk, break down for the four-state walk, and we conclude in section 6.

2. Two-dimensional quantum walks

2.1. Grover walk

For a Grover walk of degree 4 the coin operation is given by [33, 34]

-1 1 1 1
AU I TS S B |
=311 1 -1 1| ®)

1 1 1 —1
and the shift operator is
Sty = D _0)OI ® [Yamtym1) (Y| + 1D (1] @ [Yremt y1) (V|

Xy

F12) 21 @ [V 1y-1) (Veyl + 13) Bl @ (Vg1 y1) (Y[, (6)

where | ,) = [V.) ® |¥y). It is well known that the operation [S’(X,y) [é ® ]1]]’ results in
maximal spread of the probability distribution only for the very specific initial state

i) =1 (10) — 1) = 12) + 13)) ® [0,0), 7

whereas the walk is localized at the origin for any other case [43, 44]. Choosing |¥}) and

n
evolving it for ¢ steps one finds
t

WA E) = D D T A@yal0) + Beayyall) + Cegyrl2) + Diyy 13 @ [¥ieyy) ®)

x=—t y=—t
where Ay 1, By).i> Cixyyr and Dy, are given by the iterative relations

Aoy = 3= Acrtyrn—1 + Birtyrn—1 + Castynyi—1 + Dty 1)-1] (9a)
By = 3l Acsty-100-1 = Bt y—10—1 + Ciamtiy—ty—1 + Dixrty—t)—1] (9b)
Ciyye = %[A(,r—l,y+1),z—1 + Ba—1,y+1),0-1 = Cxmt,y+1),0=1 + D1, y+1),0-11] (90)
Dieyys = %[A(x—l,y—l),tfl + Bo—1,y-1),-1 + Ce—ty-1),=1 — De—t1,y—1),i—-11. (9d)

This results in the probability distribution
t

t
Pis =YY Ayl + 1Bayl® + 1Coyya* + Dyl (10)

x=—t y=—t
which is shown in figure 1 for ¢ = 25.
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Figure 1. Probability distribution for the Grover after 25 steps. An identical distribution using the
two-state particle with the 10+11) can be obtained using the alternate walk with the coin operation
B(7m /4) and the Pauli walk after 25 steps.

2.2. Alternate walk

Very recently a 2D quantum walk was suggested which used only a two-state particle which
first walks only along the x-axis followed by a step along the y-axis [38]. This walk can result
in the same probability distribution as the Grover walk and its evolution is given by

1)) = SopnB0) ® 1) (SwoBO) @ 11)| W), (11)
where
S0y = D _H0MOI ® [Wm1.y) Wyl + 1) {1 @ [Yrar1) (Yry ] (12a)
X,y
Sy = D_H0MOI ® [Wreym1) Wyl + 1) {1 @ [V g} Yyl (12b)
X,y

Using a coin operation with 6 = m /4, the state of the walk after ¢ steps can then be
calculated as

(W(1)) = W (r /4)! | Win)
= D> ) [ Awyal0) + By /DT @ [Yiay) (13)

x=—t y=—t

where Vf/(n /4) = (SA'(O,y) [é(ﬂ/4) ® ]Al])(SA’(x,o) [é(n /4 ® i]), and A y), and B, ), are given
by the coupled iterative relations

Ay = A+ 3+ 100-1 + Ag—tys10-1 + Bott oyt -1 — Bty 111 (14a)
By = ST AGs1y-110-1 — Ag—ty-1)0-1 + Bety—1).0-1 + Bimt,y-1y.0-1]1. (14b)

The resulting probability distribution is then

t

t
Py =Y [MAwyal* + 1Buy. . (15)

x=—t y=—t

which for the initial state |¥;,) = % (10)+1|1)) ®|¥0.0) gives the same probability distribution
as the four-state Grover walk (see figure 1).
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2.3. Pauli walk

A further scheme to implement a 2D quantum walk using only a two-state particle can be
constructed using different Pauli basis states as translational states for the two axes. For

convenience we can choose the eigenstates of the Pauli operator 63 = (1) 01 , |0) and
|1) as basis states for x-axis and eigenstates of & =[(1) (1)}, [+) = \lf(|0) + |1)) and
B (|0) —|1)) as basis states for y-axis [40], which also implies that |0) = [ (+)+1-))
and |l) ﬁ(l—i-) — |—)). In this scheme a coin operation is not necessary and each step of
the walk can be implemented by the operation
Soy = Sx0) (16)
followed by the operation
= Z[H’)(‘H ® |¢x.y—1><¢x,y| + |_><_| ® |wx,y+l><wx,y|]- (17)
X,y
The state after ¢ steps of the quantum walk is then given by
W) = [S6,50, 11 Win)
t t
= D) [Awyl0) + Bay DT @ [Yry). (18)
x=—t y=—t
where A, ), and By, ), are given by the coupled iterative relations
Ay = 2 Act1y400-1 + Bty -1 + Aatty—1-1 — Ba—ty-1)u-1] (19a)
By = %[B(x—l.y-&—l),r—l + Aptiy+0,—1 + Ba—ty—1),-1 — A@t1,y-1),0-1]- (19p)
The probability distribution
t t
Prs =Y Y [Awyl® + 1Byl (20)

X=—t y=—t

is again equivalent to the distribution obtained using the Grover walk and therefore also to the
alternate walk for the initial state |W;,) = (|0 +1|1)) ® [o,0) (see figure 1).

While the shift operator for the rover walk is defined by a single operation,
experimentally it has to be implemented as a two shift operation. For example, to shift
the state |0) from (x,y) to (x — 1,y — 1), it has to be shifted first along one axis and then
by the other, much like the way it is done in two-state quantum walk schemes. Therefore,
a two-state quantum walk in 2D has many advantages over a four-state quantum walk. The
two-state walk using different Pauli basis states for the different axes has the further advantage
of not requiring a coin operation at all, making the experimental task even simpler in physical
systems where access to different Pauli basis states as translational states is available. One
can, of course, also consider including a coin operation in the Pauli walk, which would result
in different probability distributions [41].

For a two-state quantum walk in 2D with a coin operation € U (2) a different initial state
of the particle can result in different non-localized probability distribution in position space.
This is a further difference to the Grover walk, which is very specific with respect to the initial
state of the four-state particle and the coin operation.
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3. Measurement-induced disturbance

Quantifying non-classical correlations inherent in a certain state is currently one of the most
actively studied topics in physics (see, for example, [45]). While many of the suggested
methods involve optimization, making them computationally difficult, Luo [42] recently
proposed a computable measure that avoids this complication: if one considers a bipartite
state p living in the Hilbert space H4 ® Hp, one can define a reasonable measure of the total
correlations between the systems A and B using the mutual information

I(p) = S(pa) +S(pg) = S(p), 2

where S(-) denotes von Neumann entropy and p4 and pp are the respective reduced density
matrices. If ps = ), pjT1; and pp = ), ppT1;, then the measurement induced by the
spectral components of the reduced states is

M(p) = Zn/{ ® Ml @ k. (22)
ik

Given that I[T1(p)] is a good measure of classical correlations in p, one may consider a
measure for quantum correlations defined by the so-called measurement-induced disturbance
(MID) [42]

0(p) =1(p) —I[T1(p)]. (23)
MID does not involve any optimization over local measurements and can be seen as a loose
upper bound on quantum discord [46]. At the same time it is known to capture most of the
detailed trends in the behaviour of quantum correlations during quantum walks [47]. Therefore,
we use MID (Q(p)) in the following to quantify quantum correlations for the different 2D
quantum walk evolutions.

Despite having the same probability distributions in the absence of noise, the MIDs for
the four-state and two-state walks differ. In figure 2(a) we show the MID between the particle
and the position degree of freedom, Q(p,,,,) for all three walks and find that it is significantly
higher for the Grover walk. Where o, is 04, (¢) for the Grover walk, p,,(¢) for the alternate
walk and pyy, (1) for the Pauli walk. However, due to the difference in the size of the particles’
degree of freedom for the Grover and two-state walks, a direct comparison of the quantum
correlations Q(p,,) does not make sense. Among the two-state schemes on the other hand,
we see that the Pauli walk has a larger Q(pp,) than the alternate walk.

A fair comparison between all systems can be made by looking at the quantum correlations
generated between the two spatial dimensions x and y, Q(p,,) (see figure 2(b)). p,, is obtained
by tracing out the particle degree of freedom from the complete density matrix [ 04 (1), 025 ()
and Py, ()] comprised of the particle and the position space. We find that Q(p,y) is identical
for both two-state schemes and exceeds the Grover walk result. This behaviour is similar to that
described in [38, 39], where the entanglement created during the Grover walk was compared
with that of the alternate walk using the negativity of the partial transpose, in its generalized
form for higher-dimensional systems [48, 49].

4. Decoherence

The effects of noise on 1D quantum walks has been widely studied [47, 50-53], but the
implications in 2D settings are less well known [37, 54, 55]. In particular, there has been no
study on either of the two-state schemes presented in the previous section and we therefore
now compare their decoherence properties to those of the Grover walk, using a state-flip
and a depolarizing channel as noise models. We show that this leads to differing probability
distributions and also has an effect on the quantity of quantum correlations.
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Figure 2. Quantum correlations Q(ppp) and Q(pyy) for the different schemes in the absence of
noise.

4.1. State flip noise

4.1.1. Grover walk. For a two-state particle, state-flip noise simply induces a bit flip

(01 = [? (1)]) but for the Grover walk, the state-flip noise on the four basis states can change

one state to 23 other possible permutations. Therefore, the density matrix after ¢ steps in the
presence of a state-flip noise channel can be written as

k
ﬁ4s<r)=§ D FiSabast = DS 4+ (1= pISapast = DS, (24)

i=1

where p is the noise level, Sy = S ) [é ® 11, and the f, are the state-flip operations. For a
noisy channel with all 23 possible flips one has k£ = 23 and in figures 3(a) and (b) we show
the probability distribution of the Grover for weak (p = 0.1) and strong (p = 0.9) noise levels
after 15 steps. Compared to the distribution in the absence of noise (see figure 1) a progressive
reduction in the quantum spread is clearly visible. Note that for p = 1 the walk corresponds
to a fully classical evolution.

In figure 4(a) we show the quantum correlations between the particle state with the
position space, Q(ppp,), as a function of number of steps 7. With increasing noise level, a
decrease in Q(pp,) is seen, whereas for the quantum correlations between the x and y spatial
dimensions, Q(pyy), the same amount of noise mainly leads to a decrease in the positive slope
(see figure 4(b)).
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Figure 3. Probability distribution of the Grover walk when subjected to a different state-flip noise
level with k£ = 23 after 15 steps. (a) and (b) are for noise levels, p = 0.1 and p = 0.9, respectively.

3

Figure 4. Quantum correlations created by the Grover walk in the presence of a noise channel,
including all possible state flips (k = 23).

4.1.2. Two-state walks. The evolution of each step of the two-state quantum walk is
comprised of a move along one axis followed a move along the other. Therefore, the walk can
be subjected to a noise channel after evolution along each axis or after each full step of the
walk. In the first case, the noise level p’ = £ is applied twice during each step in order to be
equivalent to the application of a noise of strength p in the second case. For the alternate walk
the evolution of the density matrix with a bit-flip noise channel applied after evolution along
each axis is then given by

piu0) = S1618p0 0 = D511+ (1= 5) [t = S]] (25a)

A Ping oA ot A P\ ¢ ~ &

pas) = S1618,55, 081611+ (1= 5 ) 19,6508 (25b)
1

where 6; = {O

| 0} ®1.5, =S0y[B6) ® 1] and §, = S0 [B6) ®11.
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0.02-

a 0.01-

(¢) Pauli walk (d) Pauli walk

Figure 5. Probability distributions of the two-state walk with the bit-flip noise applied after
evolution in each direction. The strength of the noise is p/2 = 0.05 in (a) and (¢) and p/2 = 0.45
in (¢) and (d) and the evolution was carried out for 25 steps each time.

Similarly, the density matrix with a bit-flip noise applied after the evolution along each
axis for the Pauli walk is given by

N Pir o A XN P\ & » 4
Prso (1) = F[6180s 200 (1 = DSE 61+ (1 - 5) [Soy 250 (t = DST ] (26a)

Paso (1) = 21618030 081,611+ (1 = £ 185, 5, 0311, (26b)

In figures 5(a) and (b) the probability distributions for the alternate walk after 25 steps
of noisy evolution with p = 0.1 and p = 0.9 are shown and figures 5(c) and (d) show the
same for the Pauli walk. It can be seen that the bit-flip noise channel acts symmetrically on
both axes for the alternate walk, but asymmetrically on the Pauli walk. This is due to the fact
that the bit-flip noise applied along the axis in which the o) Pauli basis is used leaves the
state unchanged. A completely classical evolution is recovered for p = 1 (p’ = 0.5) and an
evolution with p = 2 is equivalent to one with p = 0.

Evolving the density matrix and calculating the MID for a noiseless evolution (p = 0),
one can see from figure 6 that the initial difference in Q(pp,) between the Pauli walk and the
alternate walk decreases during the evolution and eventually both values settle at around 1.5.
For a noisy evolution, however, the initial difference in Q(p,,) does not decrease over time
and we find a higher value for the Pauli walk compared to the alternate walk. Similarly, careful
examination of figure 7 shows that the Q(p,,) for the alternate walk and the Pauli walk are
identical in the absence of noise, but differ for noisy evolution, with the alternate walk being
affected more strongly than the Pauli.

The density matrix for the second case, that is, with a noisy channel applied only once
after one full step of walk evolution, for both two-state walks is given by

fas(t) = pl610(t — 1)6{1+ (1 = p)Or — 1) (27a)

frso (1) = pl61Qy (t — D61+ (1 — )0, (t — 1), (27b)

9
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Figure 6. Particle-position quantum correlations created by the two-state walks for different bit-flip
noise levels applied after evolution along each axis.

where

0t = 1) = 5,8:p2s(t = DSIS] (28a)

X

05 (t — 1) = 856,80, 25 (t — 1S}, ST . (28b)

In this case maximum decoherence and a completely classical evolution is obtained for
p = 0.5 and the evolution with p = 1 is equivalent to that with p = 0. The probability
distributions obtained are almost identical for both walks and differ only slightly from
those obtained for the alternate walk with noise applied after evolution along each axis (see
figures 5(a) and (b)). The correlation functions Q(pp,) and Q(pxy) behave similarly for both
walks (see figures 8 and 9) and we can conclude that the presence of bit-flip noise on both
two-state walks when applied after a full step leads to equally strong decoherence.

4.2. Depolarizing channel

To describe depolarizing noise we use the standard model in which the density matrix of our
two-state system is replaced by a linear combination of a completely mixed and an unchanged
state,

= ;—’(&lﬁ&l + 62p62 + 63p83) + (1 — p)p. (29)

10
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Figure 7. Quantum correlations between the x and y spatial dimensions created by the two-state
walks for different bit-flip noise levels applied after evolution along each axis

where 61, 6, and 73 are the standard Pauli operators. To be able to compare the effects of the
depolarizing channel on the Grover walk and the two-state walks we will apply the noise only
once after each full step.

4.2.1. Grover walk. For the four-state particle the depolarizing noise channel comprises
all possible state flips, phase flips and their combinations. State-flip noise alone leads to 23
possible changes in the four-state system and adding the phase-flip noise and all combinations
of these two is unfortunately a task beyond current computational ability. Therefore let us first
briefly investigate the possibility of approximating the state flip noise by restricting ourselves
to only a subset of flips. One example would be a noisy channel with only six possible flips
(k = 6) between two of the four basis states

0100 0010 000 1
~ ltoool -~ +» o100l -~ - lo10o0] -
=10 01 0|®Y 2=]1 0 0 0|®Y f=]g 0 1 0|®"
00 0 1) 000 1 100 0
10 0 0] 1000 10 0 0]
. loo1o0|l -~ - looo 1] - - lo1o0 o0
=10 10 0|®Y H=]0g 01 o|®L fs=|g 0 0 1|®T GO
00 0 1) 0100 001 0
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Figure 8. Particle-position quantum correlations created by the two-state walks for different bit-flip
noise levels applied after evolution of one complete step.

and another a channel where only cyclic flips (k = 3) of all the basis states can appear

h=fel h=70l f=/®1, 31)
01 00
A 0010 s o
with f = 00 0 1l The probability distributions for these two approximations are
1 0 00O

visually very similar to the situation where all possible state-flips are taken into account
(k = 23) and in figure 10 we compare the results obtained for the x — y spatial quantum
correlations for a noise level of p = 0.1.

One can see that the spatial quantum correlations are affected more strongly by the k = 3
than by the full £ = 23 flip noise. This implies that the two- and three state flips included in
k = 23 acts as reversals of cyclic flips, thereby reducing the effect of noise. Since the trends
for the decrease of the quantum correlation are functionally similar for kK = 3, 6 and 23, we
will use the model with £ = 3 cyclic flips as the state-flip noise channel for the Grover walk
in this section. Similarly, taking into account the computational limitations and following the
model adopted for the state-flip, we will use a cyclic phase-flips to model the phase-flip noise,

fFl=f®l; H=/F"el; h=rel, (32)
1 0 0 O
A 0w 0 O . 2
where 77 = 00 o 0 withw =e™+ .
00 0 o
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5 T H H T
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Figure 9. Quantum correlations between the x and y spatial dimensions created by the two-state
walks for different bit-flip noise levels applied after evolution of one complete step.

4_
—noiseless
-+~k=3
3l ==k=6 |
-
(=}
g

2 4 6 8 10
Steps

Figure 10. Quantum correlations between the x and y spatial dimensions for the Grover walk in the
presence of a state-flip noise channel with p = 0.1. The noise is modelled as state-flips including
all possible flips (k = 23), flips between only two of the basis states (k = 6) and cyclic flips of all
four basis states (k = 3).

Both these approximations for state-flip and phase-flip noise will makes the complex
depolarization noise manageable for numerically treatment. The density matrix of the Grover
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Figure 11. Probability distribution of (a) the Grover walk and (b) the two-state walks when
subjected to a depolarizing channel. For the Grover walk the channel is given by equation (33) and
for all walks the noise level is p = 0.1. The distribution is shown after 15 steps of evolution.

walk can then be written as

3 3
R p AA P p A A
pus(®) = 5 ?:1 FiSapast — DS 7| + o j§:] 7iSapas(t — DS '7)7

303

2 | D D AifSubuste = DS |+ (= plSii = DS (33)

i=1 j=1

and the probability distribution for this walk is shown in figure 11(a) for p = 0.1. The
quantum correlations Q(p,,) and Q(p.,) are shown in figure 12. With increasing noise level,
adecrease in Q(pp,) is seen, whereas for the quantum correlations between the x and y spatial
dimensions, Q(pyy,), the same amount of noise mainly leads to a decrease in the positive slope
(see figure 12). From this we can conclude that the general trend in the quantum correlation
due to state-flip noise (figure 4) and depolarizing noise is the same but the effect is slightly
stronger when including the depolarizing channel.

4.2.2. Two-state walks. The depolarizing channels for the alternate and Pauli walks can be
written as

3
~ 14 A A ~ A
prc0) =2 [ 32600~ 8] | + (1 = O — 1) (34a)
i=1
p 3
prar ) = 5| 3260, = 16 | + (1= PO, =, (34b)
i=1
where 6, =0 U @1,6,=|0 "ot é=|! O |@ianddc—1)andd,—1)
T oo| TP 0 T -1 ’

are given by equations (28a) and (28b).

Similarly to the situation where we considered only state-flip noise after one complete
step (see figures 8 and 9) we again find that the quantum correlations for both walks behave
nearly identically and only differ slightly in strength compared to the case of state-flip noise
alone (see figures 13 and 14).

4.3. Robustness of two-state walk

From the preceding sections we note that the x — y spatial correlations, Q(py,), have a larger
absolute value for the two-state walks compared to the Grover walk and that the presence of
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3

(a) Grover walk

Steps
(b) Grover walk

Figure 12. Quantum correlations created by the Grover walk for different depolarizing noise levels.

noise affects all schemes in a similar manner. To quantify and better illustrate the effect the
noise has we therefore calculate

Q(py) for noisy walk
R(py) = ——22 y

) 35
O(pyy) for noiseless walk (35)

as a function of number of steps, which gives the rate of decrease in the quantum correlations.
In figures 15 and 16 we show this quantity in the presence of state-flip or depolarizing noise,
respectively, for a noise level of p = 0.2. One can clearly see that in both cases the two-state
walks are more robust against the noise at any point during the evolution. Note that the Grover
walk only produces correlations from step 2 on, which is the reason for its graph starting later.

5. Breakdown of state-flip and phase-flip symmetries for four-state walks

The quantum walk of a two-state particle in 1D is known to remain unaltered in the presence of
unitary operations which affect each step of the evolution equally. This is due to the existence
of symmetries [52, 53], which can help to identify different variants of the same quantum walk
protocol and which can be useful in designing experimental implementation. For example,
in a recent scheme used to implement a one-dimensional quantum walk using atoms in an
optical lattice [56], the conditional shift operator also flipped the state of the atom with every
shift in position space. However, the existence of a bit-flip symmetry in the system allowed
us to implement the walk without the need for compensation of these bit-flips. In this section
we look at possible symmetries in the walks discussed above and show that the bit-flip and
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Figure 13. Particle-position quantum correlations created by the two-state walks for different
depolarizing noise levels.

phase-flip symmetries, which are present in the evolution of the two-state particle are absent
in the evolution of the four-state particle.

The density matrix for a two-state quantum walk in the presence of a noisy channel will
evolve through a linear combination of noisy operations on the state and the unaffected state
itself. As an example we illustrate the symmetry due to bit-flip operations in the alternate walk
with bit-flip noise after evolution of one complete step. The density matrix in this case is given
by

pas(t) = pl6185,S.pns(t — DSISIE 1+ (1 — p)IS,Scpast — DSISTL (36)
where 0] = {(1) (1)} ® 1. When the noise level is p = 1 this expression reduces to
pas(t) = [6185,S.pos(t — 1DSISI6]]
= §\Sepas(t — DS, (37)

where in the second line the bit-flip operation has been absorbed into the evolution operator

~

S;. This replaces [0)(0] and |1)(1] in Sy by [1){(0] and |0)(1|, respectively. Similarly, for a

phase-flip, o} in equation (37) is replaced by 63 = [1

0 _01] ®1, leading to |1)(1] in S, being

replaced by —|1)(1] to construct §;
An alternative way to look at this is to absorb the bit-flip or phase-flip operation into the
coin operation. For a two-state walk using the Hadamard coin operation, the bit-flip operation
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Figure 14. Quantum correlations between the x and y spatial dimensions created by the two-state
walks for different depolarizing noise levels.
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Figure 15. Relative decay of the quantum correlations Q(pyy) in the presence of a state-flip noise

channel with p = 0.2.

after each steps corresponds to the coin operation taking the form,

~ 11 -1
o=l ]

(38)

and the phase-flip after each steps corresponds to the coin operation taking the form,

~ 1 1 1
" o__
H _«/§|:_1 1:|.

(39)
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Figure 16. Relative decay of the quantum correlations Q(p.y) in the presence of a depolarizing
noise channel with p = 0.2.

For a bit-flip or phase-flip of noise level p = 1 the Hadamard coin operation H can therefore
be recast into a noiseless (p = 0) quantum walk evolution using H' and H” for coin operation.
A noise level of p = 1 then returns a probability distribution equivalent to the noiseless
evolution and consequently the maximum bit-flip and phase-flip noise level for a two state
walk corresponds to p = 0.5. This is a symmetry within the alternate walk, which also holds
for the Pauli walk.

A state-flip noise channel for the four-state walk, on the other hand, evolves the state into
a linear combination of all possible flips between the four basis states and an unchanged state
for all values of p except for p = 0 (see equation (24)). That is, only when p = 0, equation (24)
reduces to

Pas(t) = Sapas(t — 1)S4T, (40)

whereas for any non-zero p including p = 1, equation (24) takes the form
k
1 A A
bus(t) = — | Y fiSapas(t = DSSTFT | 41
pas() =+ i:1f 4pas(t — 1S4’ f; (41)

Any attempt to absorb the noise operations f, into the shift operator or the coin operation leads
to k different results, which have to be applied with probability % Therefore, in contrast to
the two-state evolution, a state flip noise level of p = 1 does not result in a pure evolution
equivalent to the situation for p = 0. However, if the state-flip noise is restricted to one possible
operation (f;), the density matrix is no longer a linear combination of noisy operations and the
unchanged state. Thus, for p = 1 in equation (24) a single noise operation can be absorbed
into the GDO by changing the form of G (see equation (5)).

This absence of a useful symmetry for the four-state quantum walk reduces the chance
of finding an equivalent class of four-state quantum walk evolutions. Furthermore, since the
four-state quantum walk requires a specific form of coin operation to implement the walk, any
possible absorption will not result in a quantum walk in 2D, which is a significant difference
to the two-state walks.

6. Conclusion

In this paper we have studied the decoherence properties of three different schemes that realize
a quantum walk in two-dimensions, namely the Grover (four-state), the alternate and the Pauli
walks. The noise for two-state particle evolution was modelled using a bit-flip channel and
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depolarizing channel. For the four-state evolution, different possible state-flip channels were
explored and we have shown a channel with three cyclic flips between all the four states can
be used as a very good approximation to the full situation. Similarly, we presented a possible
model for the depolarizing channel of the four-state quantum walk. Using MID as a measure
for the quantum correlations within the state, our study has shown that two-state quantum
walk evolution is in general more robust against decoherence from state-flip and depolarizing
noise channels.

Following earlier studies on bit- and phase-flip symmetries in two-state quantum walks
in 1D, we have shown that they also hold for two-state quantum walks in 2D, but break down
for four-state 2D quantum walks.

With the greater robustness against decoherence, the existence of symmetries that allow
freedom of choice with respect to the initial state and the coin operation and the much
easier experimental control, we conclude that two-state particles can be conveniently used to
implement quantum walks in 2D compared to schemes using higher dimensional coins. An
other important point to be noted is the straightforward extendability of the both two-state
schemes to higher dimensions by successively carrying out the evolution in each dimension.
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