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Abstract — We show that a quantum walk process can be used to construct and secure quantum
memory. More precisely, we show that a localized quantum walk with temporal disorder can be
engineered to store the information of a single, unknown qubit on a compact position space and
faithfully recover it on demand. Since the localization occurs with a finite spread in position space,
the stored information of the qubit will be naturally secured from the simple eavesdropper. Our
protocol can be adopted to any quantum system for which experimental control over quantum

walk dynamics can be achieved.

Copyright © EPLA, 2015

Introduction. — Quantum memories are strategies
that allow to store and retrieve the state of an unknown
quantum bit faithfully. While the physics describing the
necessary conversion processes is often interesting from a
fundamental point of view, the processes themselves are of
importance for applications in quantum information and
communication. Various strategies have been considered
to store and retrieve quantum states of light [1-7] and im-
pressive progress has been made in the field of ensemble-
based quantum memories [8-14]. However, the quest for
simple, long-lived, secured and system-independent proto-
cols for quantum memory continues and here we suggest
that a discrete-time quantum walk with temporal disor-
der can be engineered to compactly store single qubits in
position space and recover them on demand. Since the
localization occurs with a finite spread in position space,
the stored information will be naturally secured from an
eavesdropper who does not have access to the complete
position space. The storage time will be directly related
to the number of implementable steps of the walk.

Discrete-time quantum walks [15,16], described by a
quantum coin operation followed by a shift operation,
evolve a localized quantum state into a coherent super-
position of different locations in position space. They are
known to have algorithmic applications, which allow to
solve a number of problems more efficiently than purely
classical approaches [17]. Furthermore, it has been shown
that they can be used to implement universal quan-
tum computation [18,19] or construct a generalized mea-
surement device [20]. Recently astonishing experimental

progress in controlling the dynamics of single quantum
states has led to implementations of quantum walks in
the NMR system, ions, photons, and atoms [21,22].
Investigating the possibilities of using quantum walks
as constituent in quantum computers and for other
fundamentally important quantum information processing
and communication applications is therefore a promising
challenge. One such use we present here is a quantum
memory which is a must for any quantum computing
device [23].

At a first look a dynamical process like a quantum walk
appears to be an unlikely candidate for a quantum mem-
ory, since it results in nontrivial quantum correlations be-
tween the particle (qubit) and the position space. While
this alters the state of the qubit as a function of time, we
present in the following a careful analysis of the dynamics
and show that the stored information can be perfectly re-
covered at specific times ¢. These times are periodic and
a function of the coin parameter 0, used for evolving the
walk. Due to the spatial spread of the qubit in position
space, the information stored will also acquire an inherent
level of security from an eavesdropper.

Though in principle this model describes a fully func-
tioning quantum memory, the dependence of the recovery
time ¢ on # poses an unwelcome and limiting restriction.
Additionally, the size of the position space required to
store the information of the qubit increases linearly over
time, thus adding an experimental challenge for achieving
long storage time. Surprising as it seems, both these issues
can be overcome.
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To enable the recovery of the information at any time
and independently of the choice of 8, we show that the
presented protocol can be amended by using a Hadamard
operation to encode and decode the initial state of the
qubit before and after the walk, respectively. To limit
the required size in position space we propose to use one
of the remarkable effects of quantum mechanics, that is,
localization of a quantum state (particle) in presence of
disorder [24,25]. This phenomenon, commonly known as
Anderson localization, is usually discussed in terms of co-
herent evolution (e.g. a quantum walk) in the presence of
a disordered medium. However, in a quantum walk dis-
order can be introduced in ways other than through the
medium alone [26-36]. By breaking the periodicity of the
evolution through randomizing the operations which de-
termine the dynamics of the system, the effect of a random
medium can be mimicked and localization around the ori-
gin achieved [34-36]. Such disordering operations can be
designed to cause spatial disorder, temporal disorder or
spatio-temporal disorder by choosing appropriate quan-
tum coin operations at different positions in space, time,
or both, respectively. Among the three forms of disorder-
creating evolutions, symmetry is known to be preserved by
the temporal disorder of the particular form presented in
ref. [36] and we show that the corresponding localization
ensures that the information of the qubit can be stored
compactly in position space.

Discrete-time quantum walks as quantum
memory. — We consider a two-state particle initially in
the state |¥)") and located at the origin. Using the ba-

sis states |0) = m and |1) = [(1)] we can write |¥;,) =

[cos(8)|0) + €™ sin(0)[1)] @ |7 = 0), where j € T labels the
position Hilbert space. Each step of the quantum walk
consists of a coin operation

cos(0)

—isin(0) M)

B —isin(6)
B®) = l cos(0) ]

which evolves the particle into a superposition of its basis
states, followed by the shift operation S =3~ [|0)(0|®|j —
D]+ 1)(1|®]j+1)(j|]. This translates the internal state
into a superposition in position space,

W () = S[B(a) ® 1}. 2)

The state after time ¢, with unit time for each step, is then
given by

(W) = [W(O)]"[Win) = > [0]0) + B[] @ [5), (3)

J
where

(4)
()

aj = cos(0)ajy1,—1 — isin(6)Bj41,6-1,

Bj,t = COS(Q)ﬂj,Lt,l — isin(@)aj,l_,t,l.

Position space (j)

Temporal axis
O ..ot s M

Fig. 1: (Colour on-line) Schematic for the discrete-time quan-
tum walk as quantum memory. The qubit, initially in state
|¥i") at position j = 0, undergoes quantum walk evolution for
a time t before it is retrieved. The spread in position space
during the evolution allows to secure the information of the
qubit from an eavesdropper.

To retrieve the quantum state at the end of the walk
(i.e. to read out the memory, all parts have to be col-
lected to a single vertex in position space, which we label
R (see fig. 1). As a physical process this can be done by
connecting all nodes j occupied at time ¢ to the final vertex
R and let all parts of the wave function interfere. Math-
ematically this collection process, Wy, can be described
using the collection operators Cf , and C} , which shift
the states |0) and |1), respectively. Its explicit form is
given by

t,R t,R
Wrp = cl, LY
T= i RY iR

Gl=—tj=—t

(6)

where

C% = 0)(0] ® |R)(j| + [1)(1] @ [5) (4],
Clp = 10001 ® [7) (5| + 11)(1] ® |R)(j|.

(7)
(®)

These operators, CJ(-{ r and C;/’ r are of the same form
as the shift operators recently suggested for a directed
discrete-time quantum walk [37], and also correspond to
the operators used for translation of basis state in the ex-
perimental realization of a topological quantum walk [38]
and for spin-dependent transport of atoms in an optical
lattice [39]. The operation Wy therefore ensures a shift
of both basis states, [0) and |1), from all spatial positions
j to R, which loses the information of the position from
which the individual parts of the wave function come from
and results in interference at R. While in general inter-
ference during the quantum walk and at position R can
prevent the reconstruction of the initially stored informa-
tion of the qubit, we present below a careful analysis to
determine the conditions under which this interference is
constructive.
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The final state retrieved after time ¢ at vertex R is
therefore given by

w(0)  |R) = WeW@O ) @i =0)],  (9)

where

t

[ ) = Y [aiel0) + Bl

j=—t

(10)

and if |W/(t)) = |Wi"), the quantum walk can in principle
be used as quantum memory.

Theorem 1. In a discrete-time quantum walk, using
eq. (1) as the coin operation, the initial state, |Ui") =
apl0) + Bol1), is related to the final state retrieved after t
steps of walk as

W (0)) = 0o W),

(11)

where o, = [(1] (1)}

Proof. To show that Theorem 1 is valid for a walk of
any time t + 7, we will use a backward iterative approach.
The state retrieved at the vertex R after time ¢ will be the
sum of the states spread across the position space,

t

[w) = Y [aiel0) + Bial1)]-

j=—t

(12)

Since the state at position j at time ¢ is dependent on the
state at positions j 4+ 1 at time ¢t — 1 as given by eq. (4)
and eq. (5), the final state can be rewritten as

l(COS(Q)aj+1,t_1 — 1 sin(9)6j+17t_1) |0>

+ (COS(@)ﬁj_l,t_l —1 sin(&)aj_lyt_l) |1>] .
(13)
Expanding this expression
w5 (t)
[005(9 ( —t41t—1 T Qpqop1+ Q1+ Oét+1,t—1>
0)

(5 141, t—1F B2, i—1F - Bri—1 + 6t+1,t—1)} |0)

) =
)
— i sin(
{COS(e (ﬂ t—1,4—1+ Bepp—1+ - Proi—1 F 51571,#1)
—isin(f)
X (a—t—l,t—l tati1+-o21+ at—l,t—l)} 1),
(14)

and reorganising the terms on the right-hand side, it can
be written as

W)= 3 (cos(B)ayn — isin(8)5;,1)[0)
j=—(-1)

+ [cos(&)(at,t_1 +ary1e-1)
—isin(0)(Br—1 + Bt-i—l,t—l)} 0)

fY

J=—(t-1)
+ [cos(@)(/@_t_1,t—1 +Btt-1)

—isin(0)(a—y—1,-1 + Oé—t,tfl)} 1)

(cos(0)B;4—1 — isin(B)a;—1)|1)

(15)

At time ¢t — 1, the amplitudes « and [ at position j <
—(t—1) and j > (t — 1) will be zero, which reduces the
preceding expression to

t—1

>

j=—(t-1)
— isin(8) (B50-110) + a1 [1)]
6—i0-o’m|\:[j£(t —1)).

L0) [c08(6) (j.-110) + By.-1]1))

(16)

Iterating the same process of expressing the amplitudes at
position j through the contributing amplitudes from the
neighbouring positions j+1 at the previous time a further
t — 1 times then leads to

(W) () = e~ "0 [T, (17)

This validates the statement of the Theorem. |

By considering the FEuler expansion of the last
expression

ot (1)) = (cos(w) 1 — isin(t6) - aw) iy, (18)

a few special cases following from Theorem 1 can be im-
mediately understood:

1) if ap = £00, (WI(t)) = et win) Vot
2) if ag # £Po,
(W (t)) = (—1)" i), if t = mn/0,

T (1))

(=)o, | W), if t =7(2n+1)/26,

where n ={0,1,2,3,---}.

To better understand the full process of the quantum
walk as quantum memory we show in fig. 2 the numerically
obtained probabilities for finding the basis state |0) as a
function of n and § and for a fixed coin value, § = 7 /6. The
probability of finding state |1) can simply be inferred by
realizing that the probabilities are normalized to one. In
fig. 2(a) we have set 7 = 0 and the thick light green curve
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Fig. 2: (Colour on-line) Probability of finding the basis state
|0) in the state retrieved after a quantum walk with ¢ steps. For
the qubit with initial state | ") = cos(8)|0)+e ™" sin(5)|1) the
probability of finding state |0) after retrieving the information
at time ¢ (final state) is shown as a function of § when 7 = 0
in (a) and as a function of n for 6 = 7/6 and n/4 in (b). The
value of § = /6 for both (a) and (b). The initial probabilities
(t = 0) are indicated by the thick green and orange lines. Both
figures clearly show that the initial and final state are identical
if either ¢ = nn/0 or if § = 7/4 or 3w /4 for V ¢.

shows the probability at ¢ = 0 (initial state). As expected,
the final probabilities for t = 7n /0 = 6n are identical with
the initial ones (dashed blue curve), whereas for times ¢ =
7w(2n 4 1)/20 = 6n + 3 the probability of finding the state
|0) is equal to the probability of finding |1) initially (red
curve). For times between these two (shown are ¢ = 6n+1
and t = 6n + 2), the final state has no easy relation to the
initial one, except at 6 = 7/4 and 0 = 3w /4.

Figure 2(b) shows the probability of finding state |0) as
a function of 7 for two different fixed values of §. In the
initial state this quantity is independent of 1 and this is
indicated by the two thick horizontal lines, light green for
d = /6 and light orange for 6 = w/4. For both cases one
can see that again for ¢ = mn/f = 6n the initial state is
perfectly recovered, for ¢ = w(2n 4+ 1)/20 = 6n + 3 the
probability of finding |0) is equal to the one of finding
[1) initially and for other times no easy relation exists
(examples for § = 7/6 and t = 6n + 2 and t = 6n + 5 are
shown). All these results are consistent with Theorem 1
and we have found this to be true independently of the
choice of coin operation.

The above model for using a quantum walk as a quan-
tum memory has an additional aspect in that it helps to
keep the information stored in the qubit secure against

i ol vt
RN 7 S 7 ey

Temporal disorder

Fig. 3: (Colour on-line) Schematic for the localized quantum
walk (LQW) as quantum memory. With this protocol any
arbitrary initial state of the qubit can be securely stored and
retrieved at any desired time.

eavesdropper who does not have access to the complete
position space. This kind of security is different from the
standard encryption models, which nevertheless could also
be added on top of the above scheme. However, it has also
the inherent limitation of only allowing perfect retrieval
at certain times t, which depend on the coin parameter
0. Additionally, the size of the position space required to
store the information increases linearly with time, making
it experimentally challenging to store it for longer dura-
tions. In the following we will show how to overcome both
these shortcomings.

Localised quantum walk as quantum memory. —
Perfect recovery at any time t independently of 6 can be
achieved by encoding and decoding the initial and the final
state by a Hadamard operation, and introducing temporal
disorder to the walk evolution will allow to compactly store
the information even for longer times. The latter can be
achieved by using a time-dependent coin operation B(6;)
(temporal disorder) with a different value of 6; (uniformly
distributed) in the range —7/2 < 6; < w/2 and randomly
chosen for each time, ¢ [34-36],

(W) = W(0)...W(03)W(02)W (61)Vin). (19)

The collection process can be described using the same
operator Wr as given in eq. (6). In fig. 3 we show the
schematic for using this localized quantum walk with tem-
poral disorder as quantum memory and although it might
seem surprising initially that the disorder does not affect
the phases irrevocably, the following theorem shows the
possibility of full retrieval of the initial state.

Theorem 2. A discrete-time quantum walk using tempo-
ral disorder during the evolution can compactly store any
arbitrary initial state |Ui") = ag|0) + Bol1) encoded using
a Hadamard operation H = % E 711] At any time t the
retrieved state can be decoded using H to recover the initial
state,

f _|€ g 0 i
where © = Y4 _, 0 and —T < 0, < T.

Proof. We will show the validity of Theorem 2 in this
proof. The complete evolution process is described as

w)) @ |R) = [H e 1)|wfin) |R) =

(20)

(1 @ 1| Wr[We) - W] win s elj=0), (1)
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where |W/(#)) is the state retrieved at vertex R after time
t before decoding and

(a0 + fo) (a0 — Bo)
V2 V2

is the encoded initial state. In the same way as detailed in
the proof for Theorem 1, we can write the retrieved state
at vertex R as

|0y e = H|T,") = 0) + ) (22)

t

WEB) = Y [asel0) + BialD)]

j=—t

(23)

and with the backward iterative approach we get

[T (1) =

t

>

j=—t

l(cos(@t)aﬂl,tl — isin(ﬁt)ﬂjﬂ,t,l) |0)
+ (cos(ﬂt)ﬁj,l,t,l — isin(ﬁt)aj,l’t,l) |1)1 . (24)

Following the same procedure as in egs. (14), (1
in Theorem 1 leads to

5) and (16)

(W (1)) = e~ Ut~ 1)), (25)

and after iterating this for a further ¢ — 1 times we obtain
(w5 (t) = (26)

efiet.az|qj§(t o 1)> _ 67i®-az|\p;n>E,

where © = 22:1 0. This can be simplified as
cos(0©)
T |2010) + 1)) + o(10) ~ 1)

i 0) +[1) ; 0) —[1)
e ®ayg (ﬂ) + e, (\/§> )

and the final state after decoding using H is

[T (1) =
(27)

e7® 0

) = o) = | ol 1. @9

This validates the statement of the theorem V ¢. [ |

In fig. 4(a), we show numerical results for the probabil-
ity distribution of the standard quantum walk evolution
(0 = /4, broken lines) and the walk with temporal disor-
dered evolution for different number of steps (full lines).
Localization of the probability distribution around the
initial position is seen for disordered evolution and the

—
D

~
o
-

100 steps

0.05¢ | 200 steps

Probability

400 steps
600 steps

0¢ '
-600 podh 600
osition
®) ,
10> in [¥" > and |‘P:, > g [ h 10> in [¥R>
dq b Al
z fi A /
-(3“ v ! % ,
05 i
2 ki y Tl ;
= ) g :
i [ H || ER: i ANIEIE
o P iR I [1> in [¥P> ‘v.'u'l'
[1>in [¥]'>and |¥ > Mg P o}
0 P~ ) .
0 /4 1%2 3n/4 b
© ‘ ;

IA‘IHIHJ‘ LT} ‘.,
. |0>In|l'">and|l >;8= w6 KM

1

051 T

it

Probability

T

: sllﬂl&'lhll EM I !liMill'! ‘\!LlllllHlHl

3n/2 2n

Fig. 4: (Colour on-line) Localized quantum walk in position
space and the probabilities of the basis states in the initial
and the final state. (a) Spatial distribution of the qubit with
temporal disordered evolution (full lines) vs. ordered evolution
(broken lines). The inset shows a closeup of the localized part.
(b) and (c): probability of finding the basis states |0) and |1)
in the retrieved state |W[') (fast oscillating curves) and the
decoded state |\I/£> (slowly oscillating curves) for any value of
t and as a function of § when n = 0 in (b) and as a function
of n for different value of § in (c). After decoding, a perfect
retrieval of the initial probabilities is obtained

inset shows that the widths of the localized distributions
do not significantly increase for larger numbers of steps.
The probabilities of finding the basis states |0) and |1)
of the initial state in the final state after retrieval (&)
and after decoding (|¥])) are shown in figs. 4(b) and (c)
as a function of § (for n = 0) and 7, respectively, for all ¢.
For the retrieved state a strongly fluctuating distribution
is seen, which nevertheless allows perfect retrieval of the
initial state after decoding. These numerical observations
are consistent with Theorem 2 and show the potential of
localized quantum walks as a secured quantum memory.

The existence of symmetries in the quantum walk is the
reason for the possibility of obtaining the global phase fac-
tor, O, in Theorem 2. This can be seen in the proof where
during each backward iteration step (eq. (24)) a symmetry
in the contribution from neighbouring positions to posi-
tion j is preserved. Because of this symmetry we obtain
© = > 0y ~ 0. This symmetry, however, would be broken
in the presence of spatial disorder, in which case the initial
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state cannot be retrieved using any known techniques.
Therefore, the use of temporal disorder is fundamentally
important in the scheme presented above.

Let us finally comment on the possibilities of a phys-
ical realization of the scheme presented above. As the
crucial requirement is to be able to implement coin opera-
tions which can have any value for 6, the recently realised
quantum walks using an optically trapped cold atom as
the qubit [22] are one system that holds this possibility:
temporally disordered coin operations can be realized by
replacing the 7/2 pulses used in the standard evolution by
pulses of random length varying between —m/2 and /2
at each step. This will lead to localisation of the atom in
the optical lattice around the initial position and there-
fore securely store the qubit. The information can then
be retrieved at any desired time by turning off the optical
potential and letting the contributions from different lat-
tices sites interfere. However, in principle this physically
demonstrates the proposed protocol for quantum memory,
the spatial nodes |j) stay too close to each other compro-
mising the security of the scheme. Advancement in ex-
perimental techniques and carefully designed protocols in
other physical systems could lead to a wide separation of
the spatial modes implementing a secured quantum mem-
ory practically effective.

Conclusions. — In conclusion, we have suggested the
use of quantum walks as quantum memory and shown that
the initial state of any unknown qubit can be retrieved
after a quantum walk evolution. However, if the evolution
is a standard one, the retrieval time ¢ is a periodic function
of the coin value #, and the size of the position space to
store the information increases linearly with time, making
it an experimentally difficult task to keep the information
for longer times.

To address both these shortcomings, we have shown
that by using a Hadamard operation to encode and de-
code the initial state and the retrieved state, respectively,
the stored information can be read out perfectly at any
stage of the discrete walk. To curb the linear growth of
the position space for longer storage times, we have sug-
gested to localize the quantum walk using temporal disor-
der and shown that perfect recovery is still possible. Since
the localized distribution will still have a finite width in
position space, this maintains the inherent security of the
protocol against a simple eavesdropping attack.

Finally, let us point out that our scheme is trivially
consistent with the requirement of a quantum memory
in a quantum computer to have a structure that facili-
tates controlled quantum evolutions [23]. However, our
memory’s abilities for information theoretic cooling and
fault-tolerant operation are still to be explored in future
work. As our scheme can be realized using random coin
values 0 at each step of the temporal evolution (as shown
in Theorem 2), precise control over the coin parameter
is not required. This significantly lowers the barrier for
experimental implementation.
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