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Abstract

Photons in optical networks can be used in multi-path interferometry and various quantum

information processing and communication protocols. Large networks, however, are often not
free from defects, which can appear randomly between the lattice sites and are caused either
by production faults or deliberate introduction. In this work we present numerical simulations
of the behaviour of a single photon injected into a regular lattice of beam-splitting components
in the presence of defects that cause perfect backward reflections. We find that the photon
dynamics is quickly dominated by the backscattering processes, and a small fraction of
reflectors in the paths of the beam-splitting array strongly affects the percolation probability of
the photon. We carefully examine such systems and show an interesting interplay between the
probabilities of percolation, backscattering and temporary localization. We also discuss the
sensitivity of these probabilities to lattice size, timescale, injection point, fraction of reflectors

and boundary conditions.
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(Some figures may appear in colour only in the online journal)

1. Introduction

Recent developments in experimental techniques have allowed
the realization and study of many complex photonic systems
such as multipath, multiphoton interferometers that exhibit
high fidelity quantum interference [1-6]. This stems from,
and also stimulates, a great deal of interest in using photons
as information carriers for various quantum information
processing and communication protocols [7-13]. However,
building the large optical networks for photon propagation
required by some of these protocols is not an easy task and
imperfections in the coupling between different sections of a
network can appear. It is therefore important to discuss and
simulate simple toy models of single photon propagation in an
irregular array of beam-splitters, in order to achieve a better

0953-4075/14/085502+06$33.00

understanding of how proposed large optical networks might
behave in practice.

Here we present a numerical study of the behaviour
of a single photon injected into a regular lattice of beam
splitting components (modelling the network), in which we
allow for perfect reflections to occur between a certain fraction
of the lattice sites (modelling the system defects, or an
intentional feature of the network). Though the presence of the
reflectors introduces irregular paths for photon propagation,
the operation at each lattice site is considered to be an ideal
lossless beam-splitter, where the input and output operators are
related by a unitary transformation. We find that the photon
is confined within a lattice of size N x N over timescales
proportional to N, but that these vary considerably with factors
such as the injection point and the boundary conditions of

© 2014 0P Publishing Ltd  Printed in the UK
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Figure 1. (a) Schematic of a beam-splitter (BS) with the output
paths (reflected and transmitted) indicated for one of the possible
input states. (b) All possible photon modes outgoing from the
beam-splitter. In the percolation direction the input state |1000)
leads to the output states [1000) and |0100) and the input state
|0100) leads to |0100) and |1000). In the backscattering direction
the input state |[0010) leads to the output states |0010) and |0001)
and the input state |0001) leads to |[0001) and |0010).

the lattice, which we choose as either reflective or absorptive.
This allows for temporary localization of the photon within the
lattice network and, as time progresses, there is a non-trivial
tradeoff between the probabilities for localization, percolation,
and backscattering.

Our presentation is organized as follows. In section 2 we
define the dynamics of a photon in a completely connected
array of beam-splitters and in section 3 we simulate the
dynamics in the presence of a number of reflectors between
adjacent beam-splitters. We then calculate the probabilities
of percolation, backscattering and temporary localization and
conclude with a discussion of the results in section 4.

2. Photon propagation in a regular array of
beam-splitters

A photon incident on a beam-splitter can be written as the Fock
state |n,, np, n., ng). For a single photon, n, + n, +n. +ny =
1 with each n being an integer and the indices a, b, c,d
specifying the four beam-splitter arms. In figure 1(a) we show
a schematic of a photon impinging on a beam-splitter and
indicate the corresponding transmitting and reflecting paths.
In figure 1(b) we define the four arms of the beam-splitter as
a, b, ¢, and d and indicate the corresponding Fock states for a
photon travelling in one of the associated modes. This allows
to define annihilation operators a, b, ¢, d, such that

411000y = |0000),  4"10000) = |1000) (1)

[G,4"1=1; [4,b]=14,¢]=I[a4d] =0, )

and analogously for the other three operators (b, ¢,d)
corresponding to the remaining three indices (ny, n., ng). Thus
the action of a beam-splitter on a photon may be regarded as
the action of the effective Hamiltonian

H= L(&"‘ —ibhHa + L(13T —ia"b
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Figure 2. Schematic of an array of beam-splitters arranged in a
square lattice with detectors (D) at all possible output ports, which
register the photon once it has moved through the array. The small
graph at the right-hand side indicates the possible paths for a photon
entering in [1000).

where the factor of i accounts for a phase shift of = during
reflection.

We will now consider an array of beam-splitters, each
positioned at the vertices of a square lattice and labelled by
(x,y) (see figure 2). Initially, a single photon is injected at
(x,¥) = (1, 1) in state | 1000) and we can describe its dynamics
using the product basis |n,, ny, ne, ng) ® H,y, where H, , is
the position Hilbert space. Therefore, the initial state at the
injection point as shown in figure 2 will be given by

IW(t = 0)) = [1000) ® |x = 1,y = 1). )

The action of the beam-splitting operator, which acts only on
the Fock state |n,, np, n., ng) and leaves the position states
unchanged, will be H (equation (3)), and the evolution of the
position state is given by the shift operation

S = Z [1000)(1000| ® |x + 1, y)(x, y|
(x,y)
+/0100)(0100| ® |x, y + 1){x, y
+10010)(0010] ® |x — 1, y){x, y|

+10001)(0001| ® |x, y — 1) {x, yl. o)

Hence the successive action of H and S on the product state
g, np, ne, ng) ® |x, y) advances the system one time step, and
after ¢ steps the state of the photon is given by

[W() = [S(H® DI'|¥(r = 0)). (6)

In this regular evolution the photon will never be scattered
into the modes |0010) and |0001) therefore it can only exit
at the upper and right-hand side edges of the lattice. We call
this forward propagation. If we define the time required for
the photon to travel between two beam-splitters as unity, the
total probability for the photon to reach an edge of a lattice of
size N x Nis P(t) = 0 fort < N, P(t) = 1 fort > 2N and
0 < P(t) < 1lforanytime N <t < 2N.
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Figure 3. Schematic of two neighbouring beam-splitters with a
reflector (R) in the connecting path. The initial output state from the
blue beam-splitter (left-hand side) is |0100) and the one from the red
beam-splitter (right-hand side) is |0001). Thus &, (x,y) = 1,
ke(x+1,y)=1.
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Figure 4. Schematic of the array of beam-splitters in a square lattice
with impurities given by perfect reflectors. Photon detectors along
(x=1,y) and (x, y = 1) will register the backscattering of the
photon due to the presence of the reflectors. The small graphs at the
right-hand side indicate the possible paths for a photon at each
vertex.

3. Photon propagation in an array of beam-splitters
with backward reflectors

Backward reflection and loss of photons between the lattice
site are two of the most fundamental processes that can
affect the forward propagation of a photon in an array of
beam-splitting components. In this section we will discuss
the additional effects that appear when a certain number of
backward reflectors are introduced into the path. While the
results are specific to the setup, the treatment we present can
serve as a general framework for other forms of irregularities
in the path of the photons.

In figure 3 we show the effect a reflector, positioned
between two beam-splitters, has on the path of a photon and in
figure 4 a schematic of an array of beam-splitters interspersed
with a number of reflectors is given. In order to model the
effect of perfect reflection at the beam-splitters, we consider
the initial state at the injection point to be given by equation (4).
Note that for symmetry reasons the results obtained below also

hold for a photon initially entering in mode |0100). For all
completely connected vertices the Hamiltonian H is given in
equation (3) and can be written as,

1 —i 0 0\ /d
1 . . ~ =i 1 o ol]]|5
H=—5@ b o 0 1 —i||é&
0 0 —i 1) \g

When a reflector is present in an arm between two vertices the
general Hamiltonian can be written in the form

>
IS
N

(N

at
[ B
H=—@ b ¢ DR| |, ®)
where R is given by
1 —k, —i(1 — kp) —ik, kp,
R— —i(1 —k,) 1 —k kq —ikp
= - ky L—ke  —i(1—kg)
ke —iky —i(1 —k.) 1 —ky
©))

with k, = 0O if the nth arm is open and k, = 1 if the nth arm
contains a reflector. The corresponding shift operator is then

S = Z [1000)(1000] ® |x + (1 — ku), y){x, y|
(x,y)

+10100)(0100] ® |x, y + (1 — kp)) (x, y|
+10010)(0010] ® |x — (1 — k), y){x, y|

+]0001)(0001| ® |x, y — (1 — kg))(x, yl, 10)

and the system evolves according to the modified equivalent
of equation (6). This ensures that a photon in, for example, the
|0100) mode will scatter into the |0001) mode and acquire a
phase shift of 7 when hitting a reflector. This photon will also
be unaffected by S, so that it encounters the same beam-splitter
a second time at the subsequent time step. The distribution of
reflectors in the lattice is given by a consistent set of k;(x, y)
such that k,(x, y) = k.(x + 1, y), etc.

During this evolution the reflections can lead to
backscattering of the photon (i.e. scattering into the modes
|0010) and |0001})), which opens the possibility for the photon
to exit along the lattice edges on the left and the bottom.
Additionally, sufficiently nearby groups of such reflectors can
lead to temporary localization of the photon in the lattice.
Therefore, in addition to the percolation probability, the
system is characterized by probabilities for backscattering and
localization. Assuming an arrangement of detectors as shown
in figure 4, percolation corresponds to the photon exiting
the lattice from either of the edges (Xmax,Y) Or (X, Ymax),
backscattering corresponds to exiting the lattice from the
edges along (1,y) and (x, 1), and localization corresponds
to temporary confinement within the lattice for times ¢ > 2N.
Since all possible photon paths are reversible, localization is of
course only transient. For the initial state given in equation (4),
i.e. injecting a single photon at one of the corners of the
lattice, we show in figure 5 the probabilities of percolation,
backscattering and temporary localization as a function of the
fraction of connections between adjacent beam-splitters that
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Figure 5. Probability of photon percolation, backscattering and
temporary localization as a function of the fraction of connections
between adjacent beam-splitters. (a) Probabilities for lattices of
different sizes, N x N, where N = 50, 100, 200 and 400 are shown
at time r = 2N. (b) Probabilities for a lattice of size N = 100 for
different times. Strong backscattering is clearly visible until the
fraction of connections between the adjacent beam-splitters is close
to unity.

are not disturbed by a reflector. These probabilities are obtained
after averaging over a large number of realizations.

The probabilities for lattices of different sizes N x N,
where N = 50,100,200 and 400, at time t = 2N are
shown in figure 5(a). One can note that the probability for
backscattering dominates until the fraction of connections
between the adjacent beam-splitters is close to unity and one
can think of the fraction at which a finite probability for
percolation appears as the analogue to the classical percolation
threshold [15-17]. This behaviour can be easily understood by
realizing that encountering a reflector once leads to scattering
into the modes that lead to backscattering, and encountering
a second reflector is necessary to scatter into the percolation
modes again. Since the injection point is located at the corner of
the network furthest away from any detectors for percolation,
reflection early on during the propagation process lead to
the domination of the backscattering probability. When the
fraction of connections is closer to unity, but before the
steep increase in percolation probability dominates, temporary
confinement of the photon within the lattice can be seen.
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Figure 6. Schematic of an array of beam-splitters in a square lattice
interspersed with a small number of perfectly reflecting surfaces and
reflecting boundaries. A photon backscattered along the injection
side of the lattice is fed back to the lattice due to reflectors placed
along these sides, except at the injection point.

This indicates that, while a large number of reflectors leads
to quick expulsion of the photon along the sides with (1, y)
and (x, 1), adecreasing number allows for geometries in which
the photon bounces around inside the lattice for a long time. A
large fraction of good connections between the beam-splitting
components is therefore required for the photon to percolate
across an array of beam-splitters. From figure 5(a), one can
also note that the lattice size (the number of beam-splitters) has
only a weak influence on these probabilities. The probabilities
for a lattice with N = 100 for different times are shown
in figure 5(b) and one can see the probability of temporary
localization decreasing with time, as expected.

The interplay between backscattering, localization and
percolation can be changed by introducing reflecting edges
in the backscattering direction and allowing backscattered
photons to only exit at the injection point (x = 1,y = 1)
(see figure 6). Unsurprisingly one can see from figure 7(a),
where we show the probabilities for different lattices sizes,
that at + = 2N backscattering is reduced and instead an
increase in temporary localization is observed compared
to the situation when reflecting edges are absent (see
figure 5(a)). Backscattering is still significant though, since
photons scattered early on in the percolation process have
a high probability to exit through the entry beam-splitter
and this probability is further increased by the coherent
backscattering [14]. In figure 7(b) we show the probabilities
for different times, and find that the probability for localization
monotonically decreases while both, the backscattering and
percolation probability rise. One can again note that the
dependence on the lattice size (the number of beam-splitters)
has only a weak influence on the probabilities.

Comparing both cases above one can note that for the
identical initial condition given by equation (4), the asymptotic
behaviour is identical: as the fraction of connections goes
to unity the percolation probability goes to one, whereas
for a fraction of connections around 0.5, backscattering
has a probability of one. While different initial conditions
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Figure 7. Probability of photon percolation, backscattering and
temporary localization as a function of fraction of connections
between the adjacent beam-splitters for the situation where a
backscattered photon is fed back to the lattice at the edges.

(a) Probabilities for lattices of different sizes, N x N, where

N =50, 100, 200 and 400 are shown at time ¢ = 2N.

(b) Probabilities for a lattice with N = 100 for different times.

exhibit qualitatively the same interplay between transient
localization and percolation (with strong dependence on
detector placement and weak dependence on lattice size),
the general asymptotic behaviour will change. An example
of this is shown in figure 8 for the situation without reflecting
boundary conditions and where we have chosen | (f = 0)) =
[1000) ® |%xmax, %ymax). For consistency we will again define
percolation as exiting the lattice in the modes |1000) or [0100)
and backscattering as having encountered an odd number
of reflectors before leaving the lattice in the modes [0010)
or [0001). In figure 8 we show the resulting probabilities
and one can note that the percolation probability is almost
same as the backscattering probability until the fraction of
connection gets closer to unity (0.8 for + = 1600 when
N = 100). After that the backscattering probability decreases
to zero and the percolation probability rises to one, as the
photon can transverse the upper right quarter of the network
most of the times without encountering a reflector. Fraction
of connections smaller than 0.5 results in localization with
probability one. Unlike the transient localization for the model
with the injection point at one of the corners of the lattice,
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o
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Figure 8. Probability of photon percolation, backscattering and
temporary localization as a function of fraction of connections
between the adjacent beam-splitters in the absence of reflecting
boundaries and with the photon incident at the centre of the lattice
array. The probabilities for a lattice with N = 100 for different times
are shown.

the localization for injection at the middle of the lattice is a
permanent localization, due to the absence of a detector close
to the injection point.

4. Discussion and conclusion

In this work we have modelled a large optical network
consisting of a regular array of beam-splitters, and considered
the effects stemming from randomly introduced reflective
defects. The presence of these defects has a significant
influence on the transport properties of the system—with the
percolation probability for a photon decaying rapidly even for
only a small percentage of defective paths (~10%). We have
also found the existence of a transient ‘localized’ state, which
confines the photon within the lattice over finite timescales.

In region of small percentages of defects, an interesting
interplay between the three possible scenarios takes place:
the photon percolates forward, the photon backscatters, or the
photon remains within the lattice. These relative probabilities
are fairly insensitive to changes in the lattice size, but vary
significantly if the distribution of detectors around the lattice
is altered (by replacing some detectors with reflectors, feeding
those photons back into the lattice). With fewer detectors
around the lattice edges, the localization probability is finite
over a much longer timescales, before giving way to both,
backscattering and percolation. If the injection point is near
a particular lattice edge, a large probability for the photon to
exit the lattice via this edge exists (backscattering processes
dominate), and if the injection point is far from a lattice edge,
long-lived localization can be seen.

The implication for large optical networks is that even
small fractions of reflective defects will significantly alter
the path taken by the photon through the system. Therefore,
quantum communication systems using optical networks will
be very sensitive to defects and require additional strategies
to combat imperfections. These could, for example, consist of
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the suitable use of additional reflectors to feed stray photon
amplitudes back into the system. The study of multipath
interferometer or large optical networks are therefore very
valuable to identify the percentages of defective components
a system can tolerate and to test ideas to correct them in order
to obtain reliable devices.
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