
Optimizing the discrete time quantum walk using a SU(2) coin

C. M. Chandrashekar,1 R. Srikanth,2,3 and Raymond Laflamme1,4

1Institute for Quantum Computing, University of Waterloo, Ontario, Canada N2L 3G1
2Poornaprajna Institute of Scientific Research, Devanahalli, Bangalore 562 110, India

3Raman Research Institute, Sadashiva Nagar, Bangalore, India
4Perimeter Institute for Theoretical Physics, Waterloo, Ontario, Canada N2J 2W9

�Received 14 November 2007; published 18 March 2008�

We present a generalized version of the discrete time quantum walk, using the SU�2� operation as the
quantum coin. By varying the coin parameters, the quantum walk can be optimized for maximum variance
subject to the functional form �2�N2 and the probability distribution in the position space can be biased. We
also discuss the variation in measurement entropy with the variation of the parameters in the SU�2� coin.
Exploiting this we show how the quantum walk can be optimized for improving the mixing time in an n-cycle
and for a quantum walk search.
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I. INTRODUCTION

The discrete time quantum walk has a very similar struc-
ture to that of the classical random walk—a coin flip and a
subsequent shift—but the behavior is strikingly different be-
cause of quantum interference. The variance �2 of the quan-
tum walk is known to grow quadratically with the number of
steps, N, �2�N2, compared to the linear growth, �2�N, for
the classical random walk �1–4�. This has motivated the ex-
ploration for new and improved quantum search algorithms,
which under certain conditions are exponentially fast com-
pared to the classical analog �5�. Environmental effects on
the quantum walk �6� and the role of the quantum walk to
speed up the physical process, such as the quantum phase
transition, have been explored �7�. Experimental implemen-
tation of the quantum walk has been reported �8�, and vari-
ous other schemes for a physical realization have been pro-
posed �9�.

The quantum walk of a particle initially in a symmetric
superposition state ��in� using a single-variable parameter �
in the unitary operator,

U� � 	cos��� sin���
sin��� − cos���


 ,

as quantum coin returns the symmetric probability distribu-
tion in position space. The change in the parameter � is
known to affect the variation in the variance, �2 �3�. It has
been reported that obtaining a symmetric distribution de-
pends largely on the initial state of the particle �3,4,10�.

In this paper, the discrete time quantum walk has been
generalized using the SU�2� operator with three Caley-Klein
parameters �, �, and � as the quantum coin. We show that the
variance can be varied by changing the parameter �, �2

��1−sin����N2 and the parameters � and � introduce asym-
metry in the position-space probability distribution even if
the initial state of the particle is in symmetric superposition.
This asymmetry in the probability distribution is similar to
the distribution obtained for a walk on a particle initially in a
nonsymmetric superposition state. We discuss the variation
of measurement entropy in position space with the three pa-
rameters. Thus, we also show that the quantum walk can be

optimized for the maximum variance, for applications in
search algorithms, improving mixing time in an n-cycle or
general graph and other processes using a generalized SU�2�
quantum coin. The combination of the measurement entropy
and three parameters in the SU�2� coin can be optimized to
fit the physical system and for the relevant applications of
the quantum walk on general graphs. This paper discusses
the effect of the SU�2� coin on the quantum walk with the
particle initially in symmetric superposition state. The SU�2�
coin will have a similar influence on a particle starting with
other initial states but with an additional decrease in the vari-
ance by a small amount.

The paper is organized as follows. Section II introduces
the discrete time quantum �Hadamard� walk. Section III dis-
cusses the generalized version of the quantum walk using the
arbitrary three-parameter SU�2� quantum coin. The effect of
the three parameters on the variance of the quantum walker
is discussed, and the functional dependence of the variance
due to parameter � is shown. The variation of the entropy of
the measurement in position space after implementing the
quantum walk using different values of � is discussed in Sec.
IV. Sections V and VI discuss optimization of the mixing
time of the quantum walker on the n-cycle and the search
using a quantum walk. Section VII concludes with a sum-
mary.

II. HADAMARD WALK

To define the one-dimensional discrete time quantum
�Hadamard� walk we require the coin Hilbert space Hc and
the position Hilbert space Hp. The Hc is spanned by the
internal �basis� state of the particle, �0� and �1�, and the Hp is
spanned by the basis state ��i�, i�Z. The total system is then
in the space H=Hc � Hp. To implement the simplest version
of the quantum walk, known as the Hadamard walk, the
particle at the origin in one of the basis states is evolved into
the superposition of the Hc with equal probability by apply-
ing the Hadamard operation

H =
1
�2

	1 1

1 − 1

 ,

such that
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�H � 1���0� � ��0�� =
1
�2

��0� + �1�� � ��0� ,

�H � 1���1� � ��0�� =
1
�2

��0� − �1�� � ��0� . �1�

The H is then followed by the conditional shift operation S;
conditioned on the internal state being �0� ��1��, the particle
moves to the left �right�,

S = �0��0� � 

i�Z

��i−1���i� + �1��1� � 

i�Z

��i+1���i� . �2�

The operation S evolves the particle into the superposition in
position space. Therefore, each step of the quantum �Had-
amard� walk is composed of an application of H and a sub-
sequent S operator to spatially entangle Hc and Hp. The
process of W=S�H � 1� is iterated without resorting to the
intermediate measurements to realize a large number of steps
of the quantum walk. After the first two steps of implemen-
tation of W, the probability distribution starts to differ from
the classical distribution. The probability amplitude distribu-
tion arising from the iterated application of W is significantly
different from the distribution of the classical walk. The par-
ticle with the initial coin state �0� ��1�� drifts to the right
�left�. This asymmetry arises from the fact that the Hadamard
operation treats the two states �0� and �1� differently and mul-
tiplies the phase by −1 only in case of state �0�. To obtain
left-right symmetry in the probability distribution, Fig. 1�b�,
one needs to start the walk with the particle in the symmetric
superposition state of the coin, ��in�� 1

�2
��0�+ i�1�� � ��0�.

III. GENERALIZED DISCRETE TIME
QUANTUM WALK

The coin toss operation in general can be written as an
arbitrary three-parameter SU�2� operator of the form

U�,�,� � 	 ei� cos��� ei� sin���
e−i� sin��� − e−i� cos���


 , �3�

the Hadamard operator, H=U0,�/4,0. By replacing the Had-
amard coin with an operator U�,�,�, we obtain the generalized
quantum walk. For the analysis of the generalized quantum
walk we consider the symmetric superposition state of the
particle at the origin. By varying the parameter � and � the
results obtained for walker starting with one of the basis �or
other nonsymmetric superposition� states can be reproduced.
A particle at the origin in a symmetric superposition state
��in�, when subjected to a subsequent iteration of W�,�,�
=S�U�,�,� � 1�, implements a generalized discrete time quan-
tum walk on a line. Consider an implementation of W�,�,�,
which evolves the walker to

W�,�,���in� =
1
�2

��ei� cos��� + iei� sin�����0���−1�

+ �e−i� sin��� − ie−i� cos�����1���+1�� . �4�

If �=�, Eq. �4� has left-right symmetry in the position prob-
ability distribution, but not otherwise. We thus find that the
generalized SU�2� operator as a quantum coin can bias a
quantum walker in spite of the symmetry of initial state of
the particle. We return to this point below.

It is instructive to consider the extreme values of the pa-
rameters in the U�,�,�. If �=�=�=0, U0,0,0=Z, the Pauli Z
operation, then W�,�,��S and the two superposition states �0�
and �1� move away from each other without any diffusion
and interference having high �2=N2. On the other hand, if
�= �

2 , then U0,�/2,0=X, the Pauli X operation, then the two
states cross each other going back and forth, thereby remain-
ing close to i=0 and hence giving very low �2�0. These
two extreme cases are not of much importance, but they
define the limits of the behavior. Intermediate values of the �
between these extremes show intermediate drifts and quan-
tum interference. In Fig. 1 we show the symmetric distribu-
tion of the quantum walk at different values of � by numeri-
cally evolving the density matrix. Figure 2 shows the
variation of � with an increase in � for a quantum walk of a
different number of steps with the operator U0,�,0. The
change in the variance for different values of � is attributed
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FIG. 2. �Color online� A comparison of the variation of � with �
for a different number of steps of walk using the operator U0,�,0

using numerical integration.
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to the change in the value of C�, a constant for a given �,
�2=C�N2 �Fig. 4, below�. Therefore, starting from the Had-
amard walk ��= �

4 ;�=�=0�, the variance can be increased
��	

�
4

� or decreased ��

�
4

�, respectively.
In the analysis of the Hadamard walk on the line in �4�, it

is shown that after N steps, the probability distributed is
spread over the interval � −N

�2
, N

�2
� and shrinks quickly outside

this region. The moments have been calculated for an asymp-
totically large number of steps, N, and the variance is shown
to vary as �2�N�= �1− 1

�2
�N2 �4�.

The expression for the variance of the quantum walk us-
ing U0,�,0 as a quantum coin can be derived by using the
approximate analytical function for the probability distribu-
tion P�i� that fits the envelope of the quantum walk distribu-
tion obtained from the numerical integration technique for
different values of �. For a quantum walk using U0,�,0 as a
quantum coin, after N steps the probability distribution is
spread over the interval (−N cos��� ,N cos���) �3�. This is
also verified by analyzing the distribution obtained using the
numerical integration technique. By assuming the value of
the probability to be zero beyond �N cos����, the function that
fits the probability distribution envelope is

� P�i�di � �
−N cos���

N cos��� �1 + cos2�2���eK�����i2/N2 cos2����−1�

�N
di

� 1, �5�

where, K���=
�N
2 cos����1+cos2�2����1+sin���� �12�. Figure

3 shows the probability distribution obtained by using Eq.
�5�. The interval (−N cos��� ,N cos���) can be parametrized
as a function of �, i= f���=N cos���sin���, where � range
from − �

2 to �
2 . For a walk with coin U0,�,0, the mean of the

distribution is zero and hence the variance can be analyti-
cally obtained by evaluating

�2 � �
−N cos���

N cos���

P�i�i2di = �
−�/2

�/2

P„f���…�f����2f����d� ,

�6�

�2 � �
−�/2

�/2 1 + cos2�2��
�N

eK����sin2���−1��N cos���sin����2

� �N cos���cos����d� = N2�1 − sin���� , �7�

�2 = C�N2 � �1 − sin����N2. �8�

We also verify from the results obtained through numerical
integration that C�= �1−sin����, Fig. 4.

Setting ��� in U�,�,� introduces asymmetry, biasing the
walker. Positive � contributes for constructive interference
toward right and destructive interference to the left, whereas
vice versa for �. The inverse effect can be noticed when the
� and � are negative. As noted above, for �=�, the evolution
will again lead to the symmetric probability distribution.
Apart from a global phase, one can show that the coin op-
erator

U�,�,� � U�−�,�,0 � U0,�,�−�. �9�

In Fig. 1 we show the biasing effect for �� ,� ,��
= �0° ,60° ,75° � and for �75°, 60°, 0°�. The biasing does not
alter the width of the distribution in the position space but
the probability goes down as a function of cos�
� on the one
side and up as a function of sin�
� on the other side, where


= ��−��. The mean value ī of the distribution, which is zero
for U0,�,0, attains some finite value with nonvanishing 
; this
contributes for an additional term in Eq. �6�,

�2 � �
−N cos���

N cos���

P�i��i − ī�2di , �10�

and contributes to a small decrease in the variance of the
biased quantum walker, Fig. 4.

It is understood that, obtaining a symmetric distribution
depends largely on the initial state of the particle and this has
also been discussed in �3,4,10,11�. But using U�,�,� as the
coin operator and examining the walk evolution shows how
nonvanishing � and � introduce bias. For example, the posi-
tion probability distributions in Eq. �4� corresponding to the
left and right positions are 1

2 �1�sin�2��sin��−���, which
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FIG. 3. �Color online� The probability distribution obtained us-
ing Eq. �5� for different values of �. The distribution is for 100
steps.
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would be equal and lead to a symmetric distribution if and
only if �=�. The evolution of the state after n steps,
�W�,�,��n��in�, is

���n�� = 

m=−n

n

�Am,n�0���m� + Bm,n�1���m�� �11�

and proceeds according to the iterative relations

Am,n = ei� cos���Am−1,n−1 + ei� sin���Bm−1,n−1, �12a�

Bm,n = e−i� cos���Am−1,n−1 − e−i� sin���Bm−1,n−1. �12b�

A little algebra reveals that the solutions Am,n and Bm,n to
Eqs. �12� can be decoupled �after the initial step� and shown
to satisfy

Am,n+1 − Am,n−1 = cos ����ei�Am−1,n − ei�Am+1,n� , �13a�

Bm,n+1 − Bm,n−1 = cos ����ei�Bm−1,n − ei�Bm+1,n� . �13b�

For spatial symmetry from an initially symmetric superposi-
tion, the walk should be invariant under an exchange of la-
bels, 0↔1, and hence should evolve Am,n and Bm,n alike �as
in the Hadamard walk �14��. From Eq. �13�, we see that this
happens if and only if �=�.

IV. ENTROPY OF MEASUREMENT

As an alternative measure of the position fluctuation to
the variance, we consider the Shannon entropy of the walker
position probability distribution pi obtained by tracing over
the coin basis:

H�i� = − 

i

pi log2 pi. �14�

The quantum walk with a Hadamard coin toss, U0,�/4,0, has
the maximum uncertainty associated with the probability dis-
tribution and hence the measurement entropy is maximum.
For �=�=0 and low �, the operator U0,�,0 is almost a Pauli Z
operation, leading to a localization of the walker at �N. At �
close to �

2 , with �=�=0, U approaches the Pauli X operation,

leading to a localization close to the origin, and again, low
entropy. However, as � approaches �

4 , the splitting of the
amplitude in position space increases toward the maximum.
The resulting enhanced diffusion is reflected in the relatively
large entropy at �

4 , as seen in Fig. 5. Figure 5 is the measure-
ment entropy with a variation of � in the coin U0,�,0 for a
different number of steps of the quantum walk. The decrease
in entropy from the maximum by changing � on either side
of �

4 is not drastic until � is close to 0 or �
2 . Therefore, for

many practical purposes, the small entropy can be compen-
sated for by the relatively large C�, and hence �2. For many
other purposes, such as mixing of the quantum walk on an
n-cycle Cayley graph, it is ideal to adopt a lower value of �.
The effect of � and � on the measurement entropy is of very
small magnitude. These parameters do not affect the spread
of the distribution, and the variation in the height reduces the
entropy by a very small fraction.

V. QUANTUM WALK ON THE n-CYCLE
AND MIXING TIME

The n-cycle is the simplest finite Cayley graph with n
vertices. This example has most of the features of the walks
on the general graphs. The classical random walk approaches
a stationary distribution independent of its initial state on a
finite graph. A unitary �i.e., non-noisy� quantum walk does
not converge to any stationary distribution. But by defining a
time-averaged distribution,

P�i,T� =
1

T


t=0

T−1

P�i,t� , �15�

obtained by uniformly picking a random time t between 0
and �T−1�, and evolving for t time steps and measuring to
see which vertex it is at, a convergence in the probability
distribution can be seen even in the quantum case. It has
been shown that the quantum walk on an n-cycle mixes in
time M =O�n log2 n�, quadratically faster than the classical
case that is O�n� �13�. From Eq. �6� we know that the quan-
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tum walk can be optimized for maximum variance
and a wide spread in position space, between
(−N cos��� ,N cos���) after N steps. For a walk on an
n-cycle, choosing � slightly above 0 would give the maxi-
mum spread in the cycle during each cycle. The maximum
spread during each cycle distributes the probability over the
cycle faster, and this would optimize the mixing time. Thus
optimizing the mixing time with a lower value of � can in
general be applied to most of the finite graphs. For an opti-
mal mixing time, it turns out to be ideal to fix �=� in U�,�,�,
since biasing impairs a proper mixing. Figure 6 is the time-
averaged probability distribution of a quantum walk on an
n-cycle graph after n log2 n time where n is 101. It can be
seen that the variation of the probability distribution over
position space is least for �=15° compared to �=45° and
�=75°.

VI. QUANTUM WALK SEARCH

A fast and wide spread defines the effect of the search
algorithm. For the basic algorithm using a discrete time
quantum walk, two quantum coins are defined, one for a
marked vertex and the other for an unmarked vertex. The
three parameters of the SU�2� quantum coin can be exploited
for an optimal search.

VII. CONCLUSION

In this paper we have generalized the Hadamard walk to a
general discrete time quantum walk with a SU�2� coin. We
conclude that the variance of quantum walk can be optimized
by choosing low � without losing much in measurement en-
tropy. The parameters � and � introduce asymmetry in the
position space probability distribution starting even from an
initial symmetric superposition state. This asymmetry in the
probability distribution is similar to the distribution obtained
for a walk on a particle initially in a nonsymmetric superpo-
sition state. Optimization of the quantum search and mixing
time on an n-cycle using low � is possible. The combination
of the parameters of the SU�2� coin and the measurement
entropy can be optimized to fit the physical system and for
relevant applications of the quantum walk on a general
graph.
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