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The study of quantum walk processes has been widely divided into two standard variants, the discrete-time
quantum walk �DTQW� and the continuous-time quantum walk �CTQW�. The connection between the two
variants has been established by considering the limiting value of the coin operation parameter in the DTQW,
and the coin degree of freedom was shown to be unnecessary �F. W. Strauch, Phys. Rev. A 74, 030301�R�
�2006��. But the coin degree of freedom is an additional resource which can be exploited to control the
dynamics of the QW process. In this paper we present a generic quantum walk model using a quantum
coin-embedded unitary shift operation UC. The standard version of the DTQW and the CTQW can be conve-
niently retrieved from this generic model, retaining the features of the coin degree of freedom in both variants.
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I. INTRODUCTION

The quantum walk �QW� as it is known today is a gener-
alization of the classical random walk �CRW� developed by
exploiting the aspects of quantum mechanics, such as super-
position and interference �1–5�. In the CRW the particle
moves in the position space with a certain probability,
whereas the QW, which involves a superposition of states,
moves by exploring multiple possible paths simultaneously
with the amplitudes corresponding to different paths interfer-
ing. This makes the variance of the QW on a line grow
quadratically with the number of steps, compared to the lin-
ear growth for the CRW. A probabilistic result is obtained
upon measurement. Several quantum algorithms have been
proposed using QWs �6–9�. Experimental implementation of
the QW has been reported �10–12�, and various other
schemes have been proposed for its physical realization
�13–17�. Beyond quantum computation, they can be used to
demonstrate coherent quantum control over atoms, photons,
or spin chains. The quantum phase transition using a QW is
one of them �18�. Direct experimental evidence for wavelike
energy transfer within photosynthetic systems has been re-
ported, emphasizing the role of the QW �19�.

There are two widely studied variants of the QW, the
continuous-time quantum walk �CTQW� and the discrete-
time quantum walk �DTQW� �20�. In the CTQW �21�, one
can directly define the walk on the position space whereas, in
the DTQW �22�, it is necessary to introduce a quantum coin
operation to define the direction in which the particle has to
move. The results from the CTQW and the DTQW are often
similar, but due to the coin degree of freedom the discrete-
time variant has been shown to be more powerful than the
other in some contexts �9�, and the coin parameters can be
varied to control the dynamics of the evolution �4,23�. To
match the performance of a spatial search using the DTQW,
the coin degree of freedom has been introduced in the
CTQW model �24�. The relation between the DTQW and the
CTQW remained unclear and was an open problem �25� until
the limiting value of the coin operation parameter in the
DTQW was considered to establish the connection �26�.
Later, the Dirac equation–DTQW–CTQW relationship was

also established �27�. In this construction the coin degree of
freedom was shown to be unnecessary. But a coin degree of
freedom is an extra resource; the parameters of the quantum
coin can be exploited to control the evolution of the QW
with potential applications in quantum computation �23� and
to simulate and control the dynamics in physical systems
�18�. The previous closest connection between the DTQW
and CTQW is the weak limit theorem for the probability
density �28–30�.

The main motivation for this paper is to construct a ge-
neric QW model that will retain the features of the coin
operation and establish the connection between the standard
variants of the QW. Since the QW is a quantization of the
classical diffusion process, it is quite natural to think in the
direction of a generic model which leads to the different
known variants of the QW under restrictions on the degrees
of freedom of the physical system or the external resources
used for implementing the QW.

We construct a generic model as an extension of the
DTQW model. We replace the fixed local unitary shift op-
erator U by the fixed local coin-embedded shift operator UC.
This will eliminate a separate coin toss operation on the par-
ticle to define the direction of the motion but retains the
features of the coin operation. UC is a physically feasible
construction which will reduce the generic model to the stan-
dard version of the DTQW or the CTQW depending on the
restriction on the degrees of freedom of the initial physical
system. It is well known that physical systems are not free of
environmental effects and it is shown that QW behavior is
very sensitive to environmental effects �31–33�. The environ-
mental effects on the two operations, the coin operation C
and the unitary shift operation U, used in the realized and
most of the proposed implementable schemes of the DTQW
contribute to a decrease in the decoherence time of the sys-
tem. The single operation UC in the generic model replaces
the two operations C and U. This reduction to a single op-
eration effectively contributes to an increase in the decoher-
ence time, which in turn contributes to the increase in the
number of implementable steps in the given system. The
single operation UC also retains the features of quantum coin
parameters.
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In Sec. II we briefly describe the standard variants of the
CTQW and the DTQW. Section III discusses the construc-
tion of the generic QW model. In Secs. IV A and IV B, the
conditions to retrieve the standard versions of the DTQW
and the CTQW are presented. With a brief description of the
physical implementation in Sec. V, we conclude in Sec. VI.

II. THE TWO VARIANTS OF THE QW

We will recall both the standard variants of the quantum
walk in this section. The review article by Kempe �20� dis-
cusses them in detail. In the CTQW �21�, the walk is defined
on the position Hilbert space Hp spanned by the basis state
��x�, x�Z. To implement the CTQW, the Hamiltonian H is
defined such that

H��x� = − ��x−1� + 2��x� − ��x+1� �1�

and is made to evolve with time t by applying the transfor-
mation

U�t� = exp�iHt� . �2�

The Hamiltonian H of the process acts as the generator ma-
trix which will transform the probability amplitude at the rate
of � to the neighboring sites. � is a fixed, time-independent
constant.

The one-dimensional DTQW �22� is defined on the Hil-
bert space H=Hc � Hp, where Hc is the coin Hilbert space
spanned by the basis states of the particle, �0� and �1�. To
implement the DTQW, the quantum coin toss operation C,
which in general can be an arbitrary U�2� operator �4�, is
applied on the particle at the origin in the state

��in� = �cos����0� + ei� sin����1�� � ��0� . �3�

For the description we will consider an arbitrary three-
parameter SU�2� operator of the form

C�,�,� � � ei� cos��� ei� sin���
e−i� sin��� − e−i� cos���

	 �4�

to get additional control over the evolution. The quantum
coin operation C�,�,� is followed by the conditional unitary
shift operation

U = exp�− 2i�z � Pl� , �5�

where P is the momentum operator and �z the Pauli z opera-
tor corresponding to a step of length l. The eigenstates of �z
are denoted by �0� and �1�. Therefore, U in the form of the
state of the particle takes the form

U = �0�
0� � �
x�Z

��x−1�
�x� + �1�
1� � �
x�Z

��x+1�
�x� . �6�

The process of

W�,�,� = U�C�,�,� � 1� �7�

is iterated without resorting to an intermediate measurement
to realize a large number of steps of the QW. The three
variable parameters of the quantum coin, �, �, and �, can be
varied to change the probability amplitude distribution in the

position space, Fig. 1. � and � can be varied to get different
initial states of the particle. By varying the parameter � the
variance can be increased or decreased via the functional
form

�2 � �1 − sin����N2. �8�

For a particle with a symmetric superposition as the initial
state, the parameters � and � introduce asymmetry in the
probability distribution and their effect on the variance is
very small. For a particle with an asymmetric superposition
as the initial state, the parameters � and � can be configured
to obtain a symmetric probability distribution �23�.

III. GENERIC QW USING THE COIN-EMBEDDED
SHIFT OPERATOR

The generic QW model is constructed as an extension of
the standard version of the DTQW. In the standard DTQW
model, Hc is spanned by the basis state of the particle, �0�
and �1�, whereas for the generic model we will introduce an
additional degree of freedom,

Hc = Hc1
� Hc2

. �9�

Hc1
is spanned by the basis states �0U� and �1U� of the exter-

nal resource which is used to implement a coin-embedded
unitary displacement UC, and Hc2

is spanned by the basis
states of the particle. Depending on the state of the external
resource and the state of the particle, the UC will implement
the QW, eliminating the need for a separate coin toss opera-
tion after every unitary displacement.

To construct UC, first let us consider the unitary shift op-
eration used in the DTQW model, Eq. �5�, which can also
take the form
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FIG. 1. �Color online� Distribution of the 100-step DTQW. The
spread of the probability distribution for different values of � using
the operator U0,�,0, is wider for �a�= �0,	 /12,0� than for �b�
= �0,	 /4,0�. Biasing the walk using � shifts the distribution to the
right, �c�= �0,	 /3,5	 /12� and � shifts it to the left, �d�
= �5	 /12,	 /3,0�. The initial state of the particle �
in�=1 /
2��0�
+ i�1�� � ��0�.
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U = e−2i�z�Pl = e−i��0�
0�−�1�
1���Pl

= ��0�
0� � e−iPl���1�
1� � eiPl� . �10�

To embed a coin operation into the above expression, the
external resource that is used to implement the unitary shift
operation on the particle has to be defined such that it is
local, that is, at each and every position space it is in the
superposition state

�
U� = �cos����0U� + ei� sin����1U�� . �11�

If the external resource that implements the shift operator is
in the state �0U�, then the particle in state �0� shifts to the left
and the particle in state �1� shifts to the right. If the external
resource is in the state �1U� then the particle in state �0� shifts
to the right and the particle in state �1� shifts to the left.

From the above description, the coin-embedded shift op-
eration UC takes the form

UC = ��0U�
0U� � exp�− i��0�
0� − �1�
1�� � Pl��

���1U�
1U� � exp�i��0�
0� − �1�
1�� � Pl�� . �12�

Therefore, UC in the form of the state of the external re-
source and the particle can be written as

UC = �0U�
0U� � ��0�
0� � �
x�Z

��x−1�
�x�

+ �1�
1� � �
x�Z

��x+1�
�x�	
+ �1U�
1U� � ��0�
0� � �

x�Z
��x+1�
�x�

+ �1�
1� � �
x�Z

��x−1�
�x�	 . �13�

The operation UC on the initial state of the system is of the
form

�
in� = �
U� � ��p� � ��0�

= �cos����0U� + ei� sin����1U��

� �cos����0� + ei� sin����1�� � ��0� �14�

and implements the first step of the generic QW; here ��p�
� ��0� is the state of the particle at the origin �position�.
Hereafter, we will write the state of the particle position after
t steps as �
t�. Since �
U� is a local state of the external
resource, after implementing UC, the state of the particle po-
sition unentangles from the external resource to again en-
tangle with the resource state �
U� in the new position. This
can be written as

�1 � �
t�� = UC��
U� � 1��1 � �
t−1�� . �15�

Therefore, irrespective of the internal state of the particle, UC
moves the particle in the superposition of the position space.
Note that the role of the coin operation is completely re-
tained in the above construction through the external re-
source which implements UC. By choosing an equal super-
position state of the external resource, Eq. �11�, the
distribution of the Hadamard walk can be retrieved.

If unit time is required to implement each step then to
implement t steps UC�t�=UC

t . Therefore, the wave function
after time t can be written as

�1 � �
t�� = �UC��
U� � 1��t�1 � �
0�� . �16�

The probability of the particle being in position x is

Px�t� = �
x��x,t��2. �17�

By choosing a different linear combination of the initial state
of the particle and the external resource implementing UC,
the probability distribution in the position space can be con-
trolled, as is done using separate coin operations in the
DTQW model.

IV. RETRIEVING THE STANDARD VERSIONS
FROM THE GENERIC MODEL

A. DTQW

If the external resource implementing UC is not in a su-
perposition, that is, if it is in one of its basis states �0C� or
�1C�, then the Hilbert space, Eq. �9�, Hc�Hc1

. Therefore UC,
Eq. �12�, reduces to

UC = ��0�
0� � e�iPl���1�
1� � e
iPl� , �18�

a unitary shift operator of the standard version of the DTQW,
Eq. �6�. Therefore, by introducing the quantum coin opera-
tion C�,�,�, the standard version of the DTQW and all its
properties can be recovered.

B. CTQW

If the initial state of a particle is not in a superposition,
that is, if it is in only one of its basis states �0� or �1�, then the
Hilbert space, Eq. �9�, Hc�Hc2

. Therefore UC, Eq. �12�,
reduces to

UC = ��0U�
0U� � e�iPl���1U�
1U� � e
iPl� , �19�

UC = exp��i��0U�
0U� − �1U�
1U�� � Pl� . �20�

If it takes unit time for each UC operation then after time t
UC�t� can be written as

UC
t = exp��i��0U�
0U� − �1U�
1U�� � Plt� . �21�

Since �0U� and �1U� are the states of the external resource
used to displace the particle, the above expression reveals the
effect of the state of the external resource on the particle,

���0U�
0U� − �1U�
1U�� � Pl���
U� � �
0��

= ��0U� � �
−1� + ��1U� � �
+1� , �22�

where � and � are the coefficients of the states �0U� and �1U�
and �
0� is the state of the particle in postion 0. Since the
external resource is a local state, Eq. �22� is

���
−1� + ��
+1� . �23�

Therefore, Eq. �21� can be written in the form

UC
t � exp�
iHLt� , �24�

where HL is the local Hamiltonian in the position space. The
probability amplitude transition rate � is related to the state
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of the external resource. By choosing an arbitrary superposi-
tion state of the external resource, Eq. �11�, different transi-
tion rates, �1 for the left and �2 for the right can be obtained;
this is also equivalent to the introduction of the coin degree
of freedom to the standard CTQW model �24�. Thus the ge-
neric quantum walk model can be reduced to the standard
version of the CTQW. The CTQW happens irrespective of
the state of the particle. All the features of the coin operation
in the standard version of the DTQW can be retrieved in this
version of the CTQW. This construction also makes the con-
nection between the DTQW and the CTQW very straightfor-
ward.

V. PHYSICAL IMPLEMENTATION

A simple physical system can be considered in which the
polarized light can act as a coin-embedded unitary shift op-
erator UC. It can be conditioned such that the vertically po-
larized light ��0U�� will shift the particle in state �0� to the left
and the particle in state �1� to the right. Horizontally polar-
ized light ��1U�� shifts the particle in state �1� to the left and
the particle in state �0� to the right. Therefore light in a co-
herent superposition of the vertical and horizontal polariza-
tions, �cos����0U�+ei� sin����1U��, can implement the UC on
a particle. The other physical advantage of using the generic
model for the implementation of the QW is the possibility of
increasing the decoherence time by reducing the number of
operations needed to implement each step of the QW. The
environmental effects on the two operations, the coin opera-
tion C and the displacement operation U, in the physical

system contribute to a reduction in the decoherence time.
Replacement of the two operations C and U by a single
operation contributes to a decrease in the environmental ef-
fects on the system and increases its decoherence time.

VI. CONCLUSION

In summary, we have constructed a generic QW model by
embedding the coin operation into the unitary shift operator
UC. The generic model retains the features of the coin opera-
tion and establishes the connection between the two standard
versions of the DTQW and the CTQW. When the external
resource that implements UC is not in a superposition of its
basis states, the standard version of the DTQW can be re-
trieved by introducing an addition coin operation. When the
particle on which the generic model is implemented is not in
a superposition of its internal states, the CTQW is retrieved
along with the features of the coin degree of freedom. This
makes the CTQW reproduce all the features of the standard
version of the DTQW. This model, along with establishing a
link between the two versions of the QW, can also play a
prominent role in increasing the decoherence time of the sys-
tem and hence in increasing the realizable number of steps in
a given physical system.
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