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Zeno subspace in quantum-walk dynamics
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We investigate discrete-time quantum-walk evolution under the influence of periodic measurements in position
subspace. The undisturbed survival probability of the particle at the position subspace P (0,t) is compared with the
survival probability after frequent (n) measurements at interval τ = t/n, P (0,τ )n. We show that P (0,τ )n > P (0,t)
leads to the quantum Zeno effect in position subspace when a parameter θ in the quantum coin operations and
frequency of measurements is greater than the critical value, θ > θc and n > nc. This Zeno effect in the subspace
preserves the dynamics in coin Hilbert space of the walk dynamics and has the potential to play a significant role
in quantum tasks such as preserving the quantum state of the particle at any particular position, and to understand
the Zeno dynamics in a multidimensional system that is highly transient in nature.
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I. INTRODUCTION

In standard quantum theory, the time evolution of the
state vector of the quantum system undergoes continuous
unitary evolution until the system is measured. If very frequent
measurements are performed on a quantum system, in order
to ascertain whether it is still in its initial state, transitions
to other states are hindered or boosted resulting in the
quantum Zeno effect (QZE) or the inverse quantum Zeno
effect (IZE), respectively [1–6]. The QZE is expected to occur
widely in quantum systems. In particular, for time t with n

measurements, the complete suppression of the transition to
other states in the limit of t/n → 0 is universal, common to
all quantum systems; that is, the system is frozen to the initial
state. However, in a multidimensional system, the QZE does
not necessarily freeze everything. On the contrary, for frequent
projections onto a multidimensional subspace, the system can
evolve away from its initial state, although it remains in
the subspace defined by the measurement. This continuing
time evolution within the projected subspace has also been
investigated [3,7–10]. In this paper, the quantum system we use
to investigate the Zeno dynamics in the projected subspace is
the discrete-time quantum-walk (DTQW) evolution in 2 × K

Hilbert space.
Quantum-walk (QW) evolution involves the quantum

features of interference and superposition resulting in the
quadratically faster spread in position space than its classical
counterpart, classical random walk (CRW) [11–15] in one
dimension. QWs are studied in two forms—continuous-time
QW (CTQW) [15] and discrete-time QW (DTQW) [13,14,16,
17]—and are found to be very useful from the perspective of
quantum algorithms [18–21] (e.g., to demonstrate the coherent
quantum control over atoms, quantum phase transition [22]; to
explain phenomena such as the breakdown of an electric-field
driven system [23] and direct experimental evidence for
wavelike energy transfer within photosynthetic systems [24];
to generate entanglement between spatially separated systems
[25]; and to induce Anderson localization of Bose-Einstein
condensate in optical lattice [26]). On the experimental front,
implementation of QWs with samples in an NMR system [27],
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in the continuous tunneling of light fields through waveguide
lattices [28], in the phase space of trapped ions [29], with single
optically trapped neutral atoms [30], and with single photon
[31] has been reported. Various other schemes have been
proposed for their physical realization in different physical
systems [32–34].

Unlike many quantum processes on which the QZE is
widely studied, the DTQW is a controlled unitary evolution
in which the constructive interference is directed away from
the initial position x = 0. This reduces the amplitude of the
particle at x = 0 to a very small value after the first few
steps of the QW evolution (cf. recurrence nature of QW
[35,36]), thus making the walk highly transient in nature.
Introducing a decoherence channel to effectively mask the
unitary evolution during each step of the DTQW decreases
the transient behavior; therefore, the QZE can be shown by
taking the rate of the measurement to ∞ (cf. Refs. [37,38],
which discuss the QZE in CTQW). However, decoherence
does not preserve the state subjected to QW evolution. In
this paper we show that without introducing a decoherence
channel, the unitary walk dynamics can be controlled to make
it less transient by choosing the specific range of parameter in
the quantum coin operation. Such a walk under the influence of
periodic measurements in position subspace (x = 0) is shown
to lead to the QZE preserving the state of the particle at that
position. This yields a quantum Zeno subspace in which the
dynamics in the coin Hilbert spaceHc of the walk is preserved.
This observation can have implications for applications of
QW to various quantum tasks such as preserving the quantum
state [39] and quantum simulation of annealing processes [40].

This paper is arranged as follows. In Sec. II we describe
the DTQW model on a line and its transient nature. In Sec. III
we discuss the conditions of the walk dynamics leading to the
Zeno effect in the position subspace. Finally, in Sec. IV we
make our concluding remarks.

II. DISCRETE-TIME QUANTUM WALK AND ITS
TRANSIENT NATURE

The DTQW in one dimension is modeled as a 2 × K

system, that is, a particle consisting of a two-level coin
(a qubit) in the Hilbert spaceHc, spanned by |0〉 and |1〉, and K

positions in the position Hilbert space Hp, spanned by |ψx〉,
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where x ∈ I, the set of integers. A t-step DTQW with unit
time required for each step of walk is generated by iteratively
applying a unitary operation W that acts on the Hilbert space
Hc ⊗ Hp,

|�t 〉 = Wt |�ins〉, (1)

where |�ins〉 is the initial state of the particle at a particular
position. We will choose a symmetric superposition state of
the particle at position x = 0

|�ins〉 = 1√
2

(|0〉 + i|1〉) ⊗ |ψ0〉 (2)

as the initial state throughout this paper. W ≡ S(B ⊗ 1), where

B = Bξ,θ,ζ ≡
(

eiξ cos(θ ) eiζ sin(θ )

−e−iζ sin(θ ) e−iξ cos(θ )

)
∈ SU(2) (3)

is the quantum coin operation. S is the controlled-shift
operation

S ≡
∑

x

[|0〉〈0| ⊗ |ψx − 1〉〈ψx | + |1〉〈1| ⊗ |ψx + 1〉〈ψx |].

(4)

The probability to find the particle at position x after t steps is
given by

P (x,t) = 〈ψx |trc(|�t 〉〈�t |)|ψx〉. (5)

For a walk on a particle with the initial state at the origin |�ins〉
using an unbiased coin operation, that is, B0,θ,0 ≡ Bθ , the
variance after t steps of walk is [1 − sin(θ )]t2 and a symmetric
probability distribution in position space is obtained [41]. In
Fig. 1, the probability distribution of 50-step QW evolution
for different values of θ in the quantum coin operation Bθ

is shown. For θ = 0◦, the two states |0〉 and |1〉 move away
from each other ballistically without any interference effect.
With an increase in θ the interference effect is seen, and the
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FIG. 1. (Color online) Spread of probability distribution of the
QW evolution using different values of θ in the quantum coin
operation Bθ . The distribution is wider for θ = 15◦ and decreases
with an increase in θ . The interference effect is absent for θ = 0◦

and θ = 90◦. The distribution is for 50 steps of walk and only even
positions are plotted because the odd position will have a zero value
for an even number of steps.
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FIG. 2. (Color online) Transient probability Ptr(t) = [1 −
P (0,t)], probability of particle moving away from the initial position
x = 0 with number of steps (time) for QW with θ = 15◦, θ = 45◦,
and θ = 75◦. We note that the Ptr(t) shoots up very quickly for lower
values of θ and, with an increase in θ , Ptr(t) increases gradually.

distribution (which is wider for low values of θ ) decreases
with an increase in θ . The interference effect again disappears
for another extreme value of θ = 90◦. The two horned peaks
on either side of the distribution, which moves away with an
increase in the number of steps, makes QW highly transient in
nature.

In Fig. 2 we have plotted the transient probability

Ptr(t) = [1 − P (0,t)], (6)

that is, the probability of the particle moving away from the
initial position x = 0 with the number of steps (time). For
lower values of θ , the Ptr(t) shoots up very quickly, and with
an increase in θ , Ptr(t) increases gradually. Therefore, making
a measurement at position x = 0 for large values of θ will yield
a survival probability. This behavior is the key for us to explore
the quantum Zeno region (QZR) in the DTQW evolution.

III. ZENO EFFECT IN SUBSPACE OF DISCRETE-TIME
QUANTUM WALK

In this section we outline the conditions for performing the
measurements and using quantum coin parameters to observe
the QZE in the subspace of the walk dynamics, preserving
the dynamics in the coin Hilbert space Hc. We first consider
the position x = 0 as the subspaceHs

p ∈ Hp from the complete
Hilbert space of the DTQW system H = Hc ⊗ Hp to study
the QZE. One of the most trivial ways to freeze the particle
at subspace Hs

p with P (0,t) = 1, resulting in the QZE, is by
making projective measurements in Hs

p at intervals far less
than the time required to implement one step of the walk (τ 

1, with unit time required for each step). Due to the transient
nature of the DTQW, for τ � 1, P (0,τ ) �= 1, observing the
Zeno effect is not straightforward. However, by being selective
in performing the measurements, we can see the QZR [42] if
the undisturbed survival probability of the particle in Hs

p is
less than the survival probability with n measurements, that is,

P (0,t) < P (0,τ )n, (7)
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where t = nτ . Measurements have to be selective for DTQW
evolution because, for every odd number of steps of walk,
the probability at subspace Hs

p and other even positions is
always zero. Therefore, intervals we need to consider for
measurements are t = 2 and its multiples. If we consider the
measurement after the first two steps of the walk, the state
only at subspace Hs

p is retained and the rest is discarded,
the QW is further evolved for the next two steps, and the
process is repeated many times before calculating the survival
probability.

It is convenient to discuss the evolution of t-step walk
using W ≡ S(B ⊗ 1) in terms of the density matrix ρ(x,t).
If ρ(0,0) = |�ins〉〈�ins|, the density matrix after t steps of
walk will be

ρ(x,t) = (Wt )ρ(0,0)(Wt )†. (8)

By taking projective measurements on the position subspace
|ψ0〉, we get

ρ(0,t) = 〈ψ0|(Wt )ρ(0,0)(Wt )†|ψ0〉. (9)

Then the survival probability at subspace Hs
p after a single

measurement is

P (0,t) = trc[ρ(0,t)]. (10)

If the projective measurement on the position subspace Hs
p is

made after the first two steps of the walk, the state |�(0,2)〉
will be

|�(0,2)〉 = [−ei(ξ−ζ ) cos(θ ) sin(θ ) − i sin2(θ )]|0〉
+ [− sin2(θ ) + ie−i(ξ−ζ ) cos(θ ) sin(θ )]|1〉. (11)

In the preceding expression, we can note that the survival
probability is largely dependent on θ and, due to symmetric
contributions from the neighboring lattice to the position x =
0, one can ignore the roles of ξ and ζ in the survival probability
of the state. The general form of the two-component vector of
amplitudes of the particle, at position x and at time t , with
left-moving (L) and right-moving (R) components, can be
written in the form

(
�L(x,t)

�R(x,t)

)
=

⎛
⎜⎜⎜⎝

eiξ cos(θ )�L(x + 1,t − 1)

+eiζ sin(θ )�R(x − 1,t − 1)

e−iξ cos(θ )�R(x − 1,t − 1)

−e−iζ sin(θ )�L(x + 1,t − 1)

⎞
⎟⎟⎟⎠ . (12)

For x = 0 and any time t in the preceding expression [the
argument used for evolution with measurement after two steps,
Eq. (12)], the symmetric contribution from the neighboring
lattice remains valid.

When n periodic measurements are made on the system,

P (0,τ )n = trc
[(

Wτ
M

)n
ρ(0,0)

(
Wτ

M

)n†] ≡ trc[ρ(0,τ )n], (13)

where Wτ
M is the unitary operation W with projective mea-

surement onto Hs
P after τ operations. For a Hadamard walk

it is shown that P (0,t) = O(t−1) [17] and for a walk with
coin operation B, P (0,t) = O( sin(θ)

t
). Therefore, P (0,τ )n =

O( sin(θ)
τ

)n. For larger θ and small τ (i.e., more frequent
measurements), we can see that P (0,τ )n > P (0,t), leading
to the QZR.
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FIG. 3. (Color online) Closer view of the variation of the survival
probability at position x = 0 with θ for 50-, 100-, and 200-step QW
evolution with measurement after every two steps (solid lines) and
after one single measurement at the end of the evolution (dashed
lines). Transition of the dynamics to the quantum Zeno region
P (0,2)n > P (0,2n) is observed at different θ for walks with different
numbers of steps. The inset is a full plot of survival probability that
becomes a unit value at θ = 90◦.

In Fig. 3, undisturbed and disturbed survival probabilities
of the state of the particle at position x = 0 for QW evolution
with different θ in the quantum coin operation are shown for
50, 100, and 200 steps of walk. The undisturbed survival
probability P (0,t) is shown using dashed lines, and the
disturbed survival probability with n measurements after every
two steps, P (0,2)n, is shown using solid lines. For a QW with
measurements after every two steps, P (0,2)25 ≈ 0 for θ < 60◦
(for 50 steps), P (0,2)50 ≈ 0 for θ < 65◦ (for 100 steps), and
P (0,2)100 ≈ 0 for θ < 70◦ (for 200 steps), respectively. At
the transition point leading to the QZR, P (0,τ )n = P (0,nτ ).
Beyond θ > θc we note that P (0,2)n < P (0,2n), leading the
walk dynamics to the QZR. In Fig. 4, the survival probability
with θ for 100-step QW evolution with different frequencies of
measurements is shown. The QZR increases with an increase
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FIG. 4. (Color online) Variation of survival probability with θ for
100-step QW evolution with different frequencies of measurements.
With an increase in the frequency of measurements, the QZR for the
range of θ increases.
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FIG. 5. (Color online) Variation of survival probability with
number of measurements (n) for 50-step QW evolution with different
θ . With an increase in the frequency of measurements and θ , the QZR
increases. All three plots in the figure converge to a unit value for n

(x axis) = 50.

in the frequency of measurements for a range of θ . In Fig. 5, the
survival probability with number of measurements for 50-step
QW evolution with different θ is shown. With an increase in the
frequency of measurements and θ , the QZR also increases. For
lower values of θ in Fig. 3, even though P (0,τ )n < P (0,nτ ),
we note that it does not continue to decrease (i.e., the opposite
of Fig. 5) with an increase in the number of measurements.
This suggests the absence of the inverse QZR.

IV. CONCLUDING REMARKS

We have discussed the DTQW evolution under the influence
of the periodic measurements in position subspace that yields

Zeno subspace preserving the dynamics of the coin Hilbert
space. The transient nature of the DTQW, which decreases
with an increase in the value of parameter θ in the quantum
coin operation, was used to explore the QZR. For particular
values of θ and frequency of measurements, the transition
from survival probability with measurements less than the
undisturbed survival probability, to survival probability with
measurements greater than the undisturbed survival proba-
bility P (0,t) < P (0,τ )n when t = nτ , was shown leading
the transition to the QZR. Because we did not consider the
decoherence channel to suppress the walk dynamics leading
to the Zeno effect, the dynamics of the state of the particle in
the projected subspace was preserved. These observations can
have implications for applications of the DTQW to various
quantum tasks. In Ref. [39], an algorithm to preserve the
quantum state was proposed making use of the QZE. Using
the DTQW and the QZE with periodic measurements in the
position subspace can also be used to preserve the quantum
state of the particle, not only at x = 0 but also at any other
particular position in the position space. This can be achieved
by using the combination of undisturbed DTQW evolution,
first to shift the peak of the QW to the desired location,
followed by frequent measurements using the parameters that
can result in the QZE. In Ref. [40], quantum simulation of the
classical annealing system is proposed using the combination
of the CTQW and the QZE in its dynamics. The ability to
control the DTQW dynamics and the QZE using quantum
operations can lead to further exploration of the annealing
problem.
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