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Disordered-quantum-walk-induced localization of a Bose-Einstein condensate
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We present an approach to induce localization of a Bose-Einstein condensate in a one-dimensional lattice
under the influence of unitary quantum-walk evolution using disordered quantum coin operation. We introduce
a discrete-time quantum-walk model in which the interference effect is modified to diffuse or strongly localize
the probability distribution of the particle by assigning a different set of coin parameters picked randomly for
each step of the walk, respectively. Spatial localization of the particle or state is explained by comparing the
variance of the probability distribution of the quantum walk in position space using disordered coin operation to
that of the walk using an identical coin operation for each step. Due to the high degree of control over quantum
coin operation and most of the system parameters, ultracold atoms in an optical lattice offer opportunities to
implement a disordered quantum walk that is unitary and induces localization. Here we present a scheme to use
a Bose-Einstein condensate that can be evolved to the superposition of its internal states in an optical lattice and
control the dynamics of atoms to observe localization. This approach can be adopted to any other physical system

in which controlled disordered quantum walk can be implemented.
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I. INTRODUCTION

Localization of waves in disordered media originally was
predicted in the context of transport of electrons in disordered
crystals by Anderson [1]. Anderson localization, resulting
in the absence of diffusion, originates from the interference
between multiple scattering paths (cf. [2]). This phenomenon
is now ubiquitous in physics [3,4]; it has been experimentally
observed and theoretically studied in a variety of systems,
including light waves [5—10] and matter waves [11-14].

Quantum-walks (QWs) [15-19], which are the quantum
analog of classical random walk (CRWSs), evolve in posi-
tion space involving interference of amplitudes of multiple
traversing paths. The quantum features of interference and
superposition are known to make probability of QW spread
quadratically faster with time than its classical counterpart
in one dimension. Some studies have shown the localization
of the interference of amplitudes between multiple traversing
paths of the QW distribution around the origin from various
different perspectives [20-26]. In particular, it is shown that the
localization of the walk dynamics in one dimension can be con-
trolled by introducing drifts with constant momentum between
two consecutive steps of QW [20] or by evolving the walk in
a random medium characterized by a static disorder [22].

The key factor for the interference effect to result in
localization is the broken periodicity in the dynamics of the
system induced by the disordered media. However, broken
periodicity need not be mediated by a disordered or a random
medium alone; operations defining the dynamics of the system
can be made random to break the periodicity such that they
mimic the effect of a random medium in the system and
manifest localization. Taking this into consideration, we can
carefully construct a QW evolution on a physical system such
that the dynamics of the walk without any disorder in the
lattice is similar to the dynamics of a walk in a disordered
medium or in the lattices leading to localization. Owing to
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the high degree of control over most of the system parameters
and recent experimental implementation of QW [27], ultracold
atoms in an optical lattice offer opportunities for the study of
disordered QW-induced localization.

Using the flexibility and control that has been achieved
over the ultracold atoms, Bose-Einstein Condensate (BEC) has
been used for the study of disorder-induced localization. Using
a cigar-shaped noninteracting BEC, exponential localization
[12] and a crossover between extended and exponentially
localized states [13] have been experimentally demonstrated.
Billy et al. [12] demonstrated exponential localization of
87Rb atoms when released into a one-dimensional waveguide
in the presence of a controlled disorder created by a laser
speckle. Roati et al. [13], using K atoms, demonstrated its
localization in a one-dimensional bichromatic optical-lattice
potential created by the superposition of two standing-wave
polarized laser beams with different wavelengths. In the
preceding two experiments, localization was demonstrated
through investigations of the transport properties and spatial
and momentum distributions. Numerical study of localization
of BEC in a bichromatic optical-lattice potential [28] and
in a random potential [29] has been reported. Recently, it
was shown that the localization by bichromatic potentials is
produced by a trapping by the potential and is not due to a
quantum suppression, in contrast to the Anderson model [30].
There are also other time-dependent phenomena that can
induce population imbalance of two self-interacting BEC and,
hence, localization in one of the double-well potentials unlike
Anderson localization, which is a stationary phenomenon [31].

Taking the preceding points into consideration, in this
paper, we present a new scheme to observe dynamic local-
ization of ultracold atoms in an optical lattice. Periodicity
in the dynamics of atoms in an optical lattice is broken
using a disordered evolution of the QW and this leads to the
interference of amplitude of multiple traversing paths of atoms
in an optical lattice to localize. Direct control over the quantum
coin operation makes it possible to choose the random set of
coin operations and control the dynamics of the QW [18,32],
which, in turn, allows us to break the periodicity and localize
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the evolution. In particular, we discuss localization using a
BEC with noninteracting and interacting atoms, respectively.
This scheme can be expanded to any of the physical systems
on which the QW can be implemented.

This article is arranged as follows. In Sec. II, we describe
the DTQW model on a line. In Sec. III, we introduce the
disordered DTQW model using controllable quantum coin
operation randomly picked for each step of walk and present
both diffusive and localization effects, respectively. In Sec. IV,
we discuss the implementation of QW in ultracold atoms and
localization of BEC. Finally, we conclude in Sec. V.

II. QUANTUM WALK

Like their classical counterparts, QWs are also widely
studied in two forms, continuous-time QW (CTQW) [19] and
discrete-time QW (DTQW) [17,18,33,34], and are found to
be very useful from the perspective of quantum algorithms
[35-38]. Furthermore, they have been used to demonstrate
the coherent quantum control over atoms [39] and to explain
phenomena such as the breakdown of an electric-field driven
system [21] and wavelike energy transfer within photosyn-
thetic systems [40,41]. Generation of entanglement between
two spatially separated systems is another application of
QWs [26]. Experimental implementation of QWs has been
reported with samples in nuclear magnetic resonance (NMR)
systems [42,43], in the continuous tunneling of light fields
through waveguide lattices [44], in the phase space of trapped
ions [45,46] based on the scheme proposed by [47], with single
optically trapped atoms [27], and with single photons [48,49].
Recently, implementation of a QW-based search algorithm in
a NMR system has been reported [50]. Various other schemes
have been proposed for their physical realization in different
physical systems [51-54].

DTQW, the dynamics of which can be controlled by
controlling the quantum coin operation, is used for the study
presented in this paper. It is modeled as a particle consisting
of a two-level coin (a qubit) in the Hilbert space H,, spanned
by |0) and |1), and a position degree of freedom in the Hilbert
space H p,, spanned by |v,), where x € I, the set of integers. A
t-step DTQW with unit time required for each step of walk is
generated by iteratively applying a unitary operation W, which
acts on the Hilbert space H. ® H,:

|W,) = W' W), (1)
where
|Win) = [cos(8/2)|0) + sin(8/2)e'?|1)] ® |o) 2)

is an arbitrary initial state of the particle at the origin and
W = S(B ® 1), where

_ [ €¥cos(@) € sin()
B=Beos = (wf sin(0) —e~i¢ cos(@)) cU@ O

is the quantum coin operation. S is the controlled-shift
operation

S= 00 @ [Y = (W [+ (1] @ [Yat D (Y] (4)

The probability to find the particle at site x after ¢ steps is
given by p(x,1) = (W |tre(| W) (W, DY)

PHYSICAL REVIEW A 83, 022320 (2011)

III. DISORDERED DISCRETE-TIME QUANTUM WALK

Direct control over the quantum coin operation B makes it
possible to control the dynamics of the DTQW [18,32]. For a
walk evolution on a particle in one dimension with initial state

L
V2

at the origin using an unbiased coin operation, that is,
Be g, with &€ = ¢ =0, the variance after ¢ steps of walk is
[1 — sin(8)]¢> [32] and a symmetric probability distribution
in position space is obtained [34,55]. Nonzero values for
parameter £ and ¢ (when & # ¢) introduce asymmetry to the
probability distribution [32]. It is also shown that DTQW with
8 # m/2inEq. (2) returns asymmetric probability distribution,
and parameters £ and ¢ can be adjusted to make the distribution
symmetric.

In a standard DTQW evolution, identical coin operation
is used during each step of the walk making it a periodic
evolution. This order can be broken by choosing a different
coin operation for each step of the walk or by choosing a
different coin operation at each position space. For simplicity,
we will consider a different coin operation during each step.
Evolution of DTQW using disordered coin operation can be
constructed by randomly choosing a quantum coin operator
for each step from a set of operators in the U(2) group.

That is,

S(Bg 0,6, ®1) ... S(Be, 0,,c, @ 1) ... S(Bey 00,00 @ DIWin) (6)

with randomly chosen parameters £,60,¢ € {0,7/2} for each
step. Although the coin parameters are randomly chosen for
each step, the evolution is unitary and involves interference of
amplitudes, and the effect is seen in the probability distribution
(see Fig. 1).

From the numerical evolution of the 100-step QW shown in
Fig. 1, although the interference effect is seen, we note that the
variance of the distribution is much closer to the variance of
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FIG. 1. (Color online) Probability distribution of the QW evolved
by assigning quantum coin operation in a U(2) group with random
parameters to each step of the walk. Parameters are assigned from
£,0,¢ € {0,r/2} for Bg g, and By, respectively. The distribution
is after 100 steps of the walk on a particle with initial state at the
origin |Wiy) = %(|0) +i]1)) ® |¥o). We see that the variance of the
distribution is very close to the variance of the classical random walk
(CRW) distribution.
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FIG. 2. (Color online) Comparison of the probability distribution
of the QW evolved by assigning quantum coin operation in a U(2)
group with random parameters in a different range to each step of the
walk to that of the Hadamard walk. (a) The Hadamard walk, which
is the standard form of the DTQW with identical coin (6 = 7/4),
(b) the walk using parameters assigned from &,6,¢ € {0,7/2} for
B: g, (c) the walk using parameters assigned from &,¢ € {0,7/2}
and 0, € {0,7/4}, and (d) the walk using parameters assigned from
&, € {0,7/2} and 6, € {m/4,7/2}. Localization is seen in the case
of (d). The distribution is after 200 steps of the walk on a particle
with initial state at the origin |W,s) = %(IO) +i|1)) ® |¥o).

the CRW distribution. However, by restricting the range of the
coin parameters that can be used for the walk, the probability
distribution can be localized or made to diffuse in position
space. One simple example we can consider is to randomly
pick different 6 for each step from a subset of a complete
range of 6, with subsets 6, € {0,7/4} and 0, € {7 /4,7 /2},
for Beg, . and Bgg, , respectively, while other parameters
are still picked from the complete range &,¢ € {0,7/2}. The
probability distribution obtained is shown in Fig. 2. The QW
using 0, € {0,7/4} diffuse in position space without any sharp
peaks when compared to the standard QW evolution using
identical coin operation with two sharp peaks. The walk using
0, € {m/4,7/2}, however, localizes the distribution around
the origin [24]. For the numerical evolution, the parameter
0 for each random coin operation in the evolution was
generated from a random number generator program with
an equal probable appearance of any number in the specific
range.

IV. LOCALIZATION OF BOSE-EINSTEIN CONDENSATES

Degenerate atomic gases have been used as a system
to experimentally implement a number of basic models
in condensed-matter theory. The possibility to create both
ordered and disordered lattice potentials in higher physi-
cal dimensions, the control of interatomic interactions, and
the possibility to measure atomic density profile via direct
imaging are the key advantages of atomic quantum gases
(cf. [56,57]).

Recently, atomic gases were used to test and implement
various quantum information protocols; particularly, by using a
single atom in an optical lattice, experimental implementation
of DTQW has been reported [27]. Single laser cooled caesium
(Cs) neutral atoms were deterministically delocalized over
the sites of a one-dimensional spin-dependent optical lattice.
Initially, the atoms distributed among the axial vibrational state

PHYSICAL REVIEW A 83, 022320 (2011)

were prepared inthe |0) = |F = 4,mp = 4) hyperfine state by
optical pumping, where F is the total angular momentum and
m g is its projection onto the quantization axis along the dipole
trap axis. The resonant microwave radiation, a w/2 pulse,
was used to coherently couple this state to the |1) = |F =
3,mp = 3) state and initialize the system in the superposition
10y +i|1))/ V2® [¥0). The state-dependent shift operation
is performed by continuous control of the trap polarization,
moving the spin state |0) to the right and state | 1) to the left adi-
abatically along the lattice axis. After ¢ steps of coin operation
and state-dependent shift, the final atom distribution is probed
by fluorescence imaging. From these images, the exact lattice
site of the atom after the walk is extracted and compared to the
initial position of the atom. The final probability distribution
to find an atom at position x after ¢ steps is obtained from
the distance each atom has walked by taking the ensemble
average over several hundreds of identical realizations of the
sequence.

Experimental complexity aside, the preceding protocol
can be adopted to other species of ultracold atoms and the
noninteracting BEC as an initial state. For example, rubidium
(¥Rb) atoms in an optical trap with state |F = I,mp = 1) =
|0) and |F = 2,mr = 2) = |1) can be coherently coupled and
moved in position space to implement DTQW. Implementing
DTQW on the BEC involves evolving BEC into macroscopic
superposition (Schrodinger cat) state [58—61] after each shift
operation, which delocalizes the state in position space [53].
Evolving the BEC into a macroscopic superposition state to
implement DTQW involves applying a rf pulse to the system
to transfer the atoms part of the way between states |0) and
|1). The duration of the pulse is kept much shorter than
the self-dynamics of the condensate. This will only evolve
each atom into the superposition of states |0) and |1), and
the corresponding N atom quantum state is a product of
single-particle superposition, that is, it is still a microscopic
superposition. However, as this initial state evolves under the
nonlinear Hamiltonian that governs the BEC with attractive
interparticle interactions, it reaches a macroscopic superposi-
tion in which all atoms in a given lattice are simultaneously in
levels |0) and |1), |Wgpc) = (1/v/2)[INjo),011y) + [0j0),N}1y)]
[53,61]. Therefore, interatomic interactions are important to
evolve the BEC into a macroscopic superposition state as
discussed above. A DTQW on a noninteracting BEC as an
initial state will implement the walk at an individual atom
level and lose the coherence. We should note that the two
experimental demonstrations of localization [12,13] were done
on a noninteracting BEC.

In a scheme proposed to implement a DTQW on ultracold
atoms in a BEC state [53], it is first evolved to a macroscopic
superposition state and a stimulated Raman kick, i.e., two
selected levels of the atoms are coupled to the two modes
of counterpropagating laser beams to coherently impart a
translation of atoms in the position space. After each trans-
lation, the wave packet is again evolved into the macroscopic
superposition state at each lattice x, where the number of
atoms n, < N and the process is iterated to implement a large
number of steps of QW. When n, is very small, the atoms will
evolve to the superposition only at an individual atom level,
i.e., microscopic superposition. With a certain modification to

022320-3



C. M. CHANDRASHEKAR

0.2 ‘
——100step| 4 N\ Am
Mt Law 100 step QW
A <+ 400 stey ! ¥
Pl o ! - --200 step QW
0.15 for i —400 step QW
oos . i —100 step LQW
E . ! s -*-200 step LQW
B oq] R - 400 step LQW
Ke)
<]
a
0.05 P !
::l B |,II|
-400 -200 0 200 400

Position

FIG. 3. (Color online) Comparison of a standard QW evolution
(Hadamard walk) and a localized QW (LQW) after 100, 200, and
400 steps, respectively. For a walk using randomly picked parameters
6, € {m/4,w/2} for each step of the walk, distribution remains
localized near the origin irrespective of the number of steps (time).
The distribution is after the walk on a particle with initial state at the
origin |Wi,) = %(IO) +i|1)) ® |¥o). The inset is a closer view of a
localized QW distribution between position —30 and +30 for 100,
200, and 400 steps, respectively.

this scheme, that is, by evolving atoms to the superposition
of the states at an individual atom level and implementing the
shift operation before the interatomic interaction takes over to
form a macroscopic superposition, the QW at an individual
atom level can be realized [24].

To observe localization, the periodic evolution using a
/2 pulse as quantum coin operation during each step of
the walk in the preceding protocols is broken by randomly
picking the pulse from the range {7 /4,7 /2}. Therefore, during
each step, the coin operation evolves the state to an unequal
superposition state such that the constructive interference
effect and amplitude are directed toward the origin. In
Fig. 3, we compare the QW evolution using an identical coin
operation for each step (Hadamard walk) and localized QW
(LQW) after 100, 200, and 400 steps, respectively. For a
walk using randomly picked parameters 6, € {m /4,7 /2} for
each step of the walk, distribution remains localized near the
origin irrespective of the number of steps (time). In Fig. 4,
the localization length Ly, is numerically obtained by taking
the ratio of the variance of the probability distribution LQW
to that of the QW using an identical coin operation for each
step,

o)
loc = pu ( 9)
where 0, is the randomly picked quantum coin parameter from

range {m /4,7 /2} for each step and 6 is the identical quantum
coin parameter throughout the walk evolution.

(7
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FIG. 4. (Color online) Localization length obtained by calculat-
ing the ratio of the variance of the probability distribution LQW to
that of the QW using an identical coin operation for each step. For
each plot, different 0 in the coin operation are picked for an identical
coin operation.

V. CONCLUSION

We have discussed an approach to dynamic localization
of ultracold atoms in a one-dimensional lattice under the
influence of DTQW using disordered quantum coin operations.
We introduced a DTQW model in which a random coin
parameter is assigned to each step of the walk to break the
periodicity during the walk evolution. By picking the coin
operation from a different range of parameters, we have shown
that the DTQW on a two-state particle in a one-dimensional
lattice can be diffused or strongly localized in position space,
respectively. We have shown that these behaviors of the DTQW
can be efficiently induced without introducing decoherence
into the system. Using ultracold atoms in an optical lattice
as a physical system, we have discussed implementation of a
DTQW flexibility in control over the experimental parameters
to configure walk to diffuse or localize in position space.
We have discussed implementation of DTQW on atoms at
an individual level in a BEC and on a BEC retaining the
macroscopic coherence (BEC) state throughout the evolution.
From this, we can conclude that the localization can be
observed in a BEC with noninteracting atoms and interacting
atoms, respectively. In general, the disordered coin operations
(microwave pulses) in DTQW on atoms can be made to
mimic the random media localizing the BEC. This approach
can be adopted to any other physical system in which a
controlled disordered DTQW can be implemented, broadening
the spectrum of possible application of DTQW to study
dynamics and phases in physical systems.
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