
Two-component Dirac-like Hamiltonian
for generating quantum walk on one-,
two- and three-dimensional lattices
C. M. Chandrashekar

Quantum Systems Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan.

From the unitary operator used for implementing two-state discrete-time quantum walk on one-, two- and
three- dimensional lattice we obtain a two-component Dirac-like Hamiltonian. In particular, using different
pairs of Pauli basis as position translation states we obtain three different form of Hamiltonians for
evolution on one-dimensional lattice. We extend this to two- and three-dimensional lattices using different
Pauli basis states as position translation states for each dimension and show that the external coin operation,
which is necessary for one-dimensional walk is not a necessary requirement for a walk on higher dimensions
but can serve as an additional resource to control the dynamics. The two-component Hamiltonian we
present here for quantum walk on different lattices can serve as a general framework to simulate, control,
and study the dynamics of quantum systems governed by Dirac-like Hamiltonian.

Q
uantum walks, developed as the quantum analog of the classical random walks1–6 first emerged as a
powerful tool in the development of quantum algorithms7–10. Subsequently, its rich dynamics consti-
tuting evolution in superposition of position space has been used as a framework to understand and

simulate the dynamics in various systems. For example, they have been used to explain phenomena such as the
breakdown of an electric-field driven system11 and mechanism of wavelike energy transfer within photosynthetic
systems12,13, to demonstrate the coherent quantum control over atoms14, localization of Bose-Einstein conden-
sates in optical lattice15 and to explore topological phases16. The discrete-time version of the quantum walk
(DQW)5,17–24 on a two-state particle is described using a quantum coin operation acting on the internal state
of the particle followed by a shift operator to evolve the particle coherently in superposition of different location in
position space. During last few years, experimental implementation of the DQW have been demonstrated with
energy levels in NMR25, ions26,27, photons28–31, and atoms32. These experimental implementations using one-
dimensional (1D) DQW model on a two-level system using a degree two coin operation have opened up a new
dimension to simulate quantum dynamics in physical systems like the recent demonstration of localization of
photon’s wavepacket30. Now the immediate interest would be to extend the implementation to two-dimensional
(2D) and three-dimensional (3D) lattice structure with the available resources. One of the extension to the 2D is
the Grover walk which is defined on a four-level particle with a specific initial state33,34. An alternative extension to
higher (d) dimensions is to use a d coupled qubits to describe the internal states36,37. This is extremely challenging
with the available resources to implement it experimentally. To overcome this challenge, an alternative 2D DQW
using a two-state particle resulting in a probability distribution equivalent to the probability distribution from the
Grover walk was very recently proposed38,39. The evolution in one of the scheme38 is composed of evolving the
particle in superposition of position space using Hadamard coin operation followed by a shift operation in one of
the dimension followed by the evolution in the other dimension with the Hadamard coin operation followed by a
shift in that dimension. An evolution in an other two-state scheme is composed of evolving the particle in
superposition of position space using the basis states of one of the Pauli operator as the position translation state
for one dimension followed by evolving in an other dimension using the basis states of a different Pauli operator as
position translation state39. The DQW on square lattice using both these two-state schemes were shown to be
more tolerant to noise when compared to the four-state Grover walk39. In addition, we know that the dynamics in
many natural quantum systems are governed by the Hamiltonian. Therefore, it is extremely important to explore
the relevant Hamiltonian form to describe the two-state DQW on 1D, 2D, and 3D lattices. This will give way to
simulate and explore the possibility of mimicking the dynamics in various naturally occurring physical systems.

In this report, starting from the unitary operator used to describe the evolution of DQW in 1D with different
Pauli basis states as the position translation states, we obtain the Hamiltonian for the evolution on the discrete
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space and show that its differential operator forms are analogous to
the two-component Dirac Hamiltonian. By setting different Pauli
basis states as the position translation states for each dimension we
show that the two-state DQW can be realized on a physically relevant
2D: square, triangular, kagome, and 3D: cubic lattice structures. The
Hamiltonian form we obtain for the DQW evolution on square and
cubic lattice in the differential operator form are structurally ident-
ical to the two-component Dirac Hamiltonian for relativistic particle
in two- and three- spatial dimensions. In absence of the quantum
coin operation, the Hamiltonian we obtain is identical to the massless
case of the relativistic evolution and in presence of the quantum coin
operation, the Hamiltonian form for the relativistic evolution of the
massive particle is reproduced. Some of the earlier works have estab-
lished the connection between the DQW and the Dirac equations, by
discretizing the Dirac equation to realize unitary cellular automata40,
by using the propagator approach in continuum limit for quantum
lattice gas automata17, and by analyzing the 1D DQW dynamics in
different continuous and small incremental settings at vanishing
(very small) value of h in the quantum coin operation used for the
evolution41–43. In this report, we use the small spatial incremental
setting (z R z 6 1) to arrive at the differential operator form and
establish the connection between the DQW and Dirac Hamiltonian
for evolution in all three spatial dimensions and all values of h. We
also show that Hamiltonian form from the evolution operator for
DQW on the triangular and kagome lattice is notably different from
the Dirac-like Hamiltonian with a second order derivative terms.
Operators acting on the basis states of the Pauli matrices are very
common in quantum optics experiments and various other physical
systems making this scheme of using Pauli basis as position trans-
lation states an implementable one in the present experimental set-

ups. We also show that the external coin operation (h=
np
2

, n[II)

which is required for 1D DQW to evolve with an intriguing inter-
ference is not a necessary requirement for 2D and 3D DQW using
Pauli basis as position translation states. However, an external coin
operation can be used as an additional degree of freedom to control
the dynamics. Therefore, the DQW using Pauli basis states as posi-
tion translation states and the two-component Hamiltonian for the
evolution on the discrete-position space which is presented in this
report, can serve as a general framework to simulate, control, and
study the dynamics in different 2D and 3D physical systems.

Results
Hamiltonian for generating one-dimensional DQW. The standard
form of DQW evolution on a two-state particle in 1D lattice is
defined on a coin (c) and the position (p) Hilbert space
H~Hc6Hp. The basis states of Hc is the position translation

states which can be the internal states of the particle, ;j i~ 1
0

� �

and :j i~ 0
1

� �
or any of the pair of the basis states of the Pauli

operators. The basis states of Hp is described in terms of jjæ, where
j[II, the set of integers associated with the lattice sites. Below, starting
from the unitary operator for DQW evolution using different Pauli
basis states as the position translation state we obtain the
Hamiltonian for walk on discrete-space for each case and show
that differential operator form of these Hamiltonians in a finite
spatial incremental setting takes the form of the two-component
Dirac Hamiltonian.

Basis states of ŝz as position translation state. For Pauli operator

ŝz~
1 0
0 {1

� �
, the eigenstates are zj isz

~ ;j i and {j isz~ :j i.

For the evolution using basis states of Pauli operator ŝz as position
translation state we will choose jzæ where z[II as the position space.
Each step of 1D DQW evolution, Ŵsz hð Þ is described using a

quantum coin operation B̂sz hð Þ: cos hð Þ sin hð Þ
{sin hð Þ cos hð Þ

� �
which evol-

ves the particle (coin) into the superposition of its basis states fol-
lowed by the unitary shift operator

Ŝsz:
X

z

;j i ;h j6 z{1j i zjh z :j i :h j6 zz1j i zh j½ �, ð1Þ

which shift the state of the particle in superposition of the position
space. That is,

Ŵsz hð Þ:Ŝsz B̂sz hð Þ6
� �

~
X

z

cos hð Þ sin hð Þ

0 0

" #
6 z{1j i

 

zjh z
0 0

{sin hð Þ cos hð Þ

" #
6 zz1j i zjh

!
:

ð2Þ

The state after the t steps evolution of the DQW is given by,

Ytj i~ Ŵsz hð Þ
� �t

Yinj i, where Yinj i~ cos d=2ð Þ ;j izeigsin d=2ð Þð
:j iÞ6 0j i, is the initial state of the particle at origin, z 5 0. The coin

parameter h in Ŵsz hð Þ controls the variance of the probability distri-
bution of the walk. Equivalently, the initial state of the particle at
the origin can be written as a two-component wavefunction,

Yinj i~ y; 0,0ð Þ
y: 0,0ð Þ

� �
and the net evolution operator for implementing

each step of the DQW will be,

Ŵsz hð Þ~ cos hð Þe{iP̂z sin hð Þe{iP̂z

{sin hð ÞeziP̂z cos hð ÞeziP̂z

" #
: ð3Þ

Here P̂z is the position displacement operator whose action on all
position z is local such that e+iP̂z y; :ð Þ z,tð Þ~y; :ð Þ z+1,tð Þ5,6. The state
of the particle after any time t (t steps) will be

Yj tð Þi~ Ŵsz hð Þ
� �t y; 0,0ð Þ

y: 0,0ð Þ

" #
~
X

z

y; z,tð Þ
y: z,tð Þ

" #
, ð4Þ

and the unitary operator Ŵsz hð Þ:e{iĤsz hð Þ. We have taken 5 1 and
Ĥsz hð Þ is the effective Hamiltonian corresponding to the unitary oper-
ator Ŵsz hð Þ. By taking the logarithm of Ŵsz hð Þ, the effective form of
the time independent Hamiltonian we obtain for the quantum walk on
discrete position space is,

Ĥsz hð Þ~ v̂z

sin v̂zð Þ
cos hð Þsin P̂z

� �
{i sin hð Þe{iP̂z

{i sin hð ÞeiP̂z cos hð Þsin P̂z
� �

" #
:ŝz: ð5Þ

Here v̂z~cos{1 cos hð Þsin P̂z
� �� �

and the action of sin P̂z
� �

and
cos P̂z
� �

on state y#(")(z, t) is given by

sin P̂z
� �

y; :ð Þ z,tð Þ~ i
2

y; :ð Þ z{1,tð Þ{y; :ð Þ zz1,tð Þ
h i

, ð6Þ

cos P̂z
� �

y; :ð Þ z,tð Þ~ 1
2

y; :ð Þ z{1,tð Þ{y; :ð Þ zz1,tð Þ
h i

: ð7Þ

The differential operator form of the Eq. (5) will be,

Ĥsz hð Þ~{i
cos hð Þ sin hð Þ

sin hð Þ {cos hð Þ

" #
: L
Lz

z
0 {i

i 0

" #
sin hð Þ~{iâz

: L
Lz

zb̂zsin hð Þ:

ð8Þ

See Methods for the intermediate steps. The standard form of the
two-component Dirac Hamiltonian is,
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ĤD~{i câ:
L
Lz

zb̂mc2, ð9Þ

where m is the mass of the particle, c is the speed of light, z is the
spatial coordinate, matrix, â and b̂ are Hermitian and satisfy,
â2~b̂2~ and âb̂~{b̂â. For a two-component Dirac
Hamiltonian, â and b̂ are the Pauli matrices. In Eq. (8), though the
matrices âz and b̂z are Hermitian and satisfy, â2

z~b̂2
z~ and

âzb̂z~{b̂z âz , âz is not a Pauli matrix. Since the Hamiltonian has
a rotational invariance property, by introducing rotation
R̂y h=2ð Þ~e{ih2ŝy to the Eq. (8), âz changes to the Pauli matrix,

Ĥ’sz hð Þ~R̂{
y

h

2

� 	
Ĥsz hð ÞR̂y

h

2

� 	
~{iŝz

: L
Lz

zŝysin hð Þ: ð10Þ

The Hamiltonian given by Eq. (10) is identical to the two-component
Dirac Hamiltonian, the mass equivalent term, m 5 sin(h) and c 5 1.

Basis states of ŝx as position translation state. For the basis states,

zj isx
~

1ffiffiffi
2
p 1

1

� �
; {j isx

~
1ffiffiffi
2
p 1

{1

� �
of the Pauli operator

ŝx~
0 1
1 0

� �
as the position translation states, we will choose jxæ

as the position space where x[II. The quantum coin operation for
the walk will be,

B̂sx hð Þ~cos hð Þzj isx
zh jzsin hð Þzj isx

{h j

{sin hð Þ{j isx
zh jzcos hð Þ{j isx

{h j,
ð11Þ

and the shift operator will be,

Ŝsx:
X

x

zj is1
zh j6 x{1j i xh jz {j is1

{h j6 xz1j i xh j
h i

: ð12Þ

The effective operator for one complete step of the walk will be,
Ŵsx hð Þ~Ŝsx B̂sx hð Þ6

� �
. When the initial state of the two-compon-

ent wavefunction of the particle at the origin is given by

Yinj i~ y; 0,0ð Þ
y: 0,0ð Þ

� �
, the state after t steps of the walk will be,

Y tð Þj i~ Ŵsx hð Þ
� �t

Yinj i~
P

x

y; x,tð Þ
y: x,tð Þ

" #
, ð13Þ

where Ŵsx hð Þ when written in the basis formed by the eigenvectors
of ŝx is,

Ŵsx hð Þ: e{iP̂x

2

cos hð Þzsin hð Þ cos hð Þ{sin hð Þ

cos hð Þzsin hð Þ cos hð Þ{sin hð Þ

" #
z

eziP̂x

2

cos hð Þ{sin hð Þ {cos hð Þ{sin hð Þ

{cos hð Þzsin hð Þ cos hð Þzsin hð Þ

" #
:e{iĤsx hð Þ:

ð14Þ

Here P̂x is the position displacement operator whose action on state

y#(")(x, t) is local such that e+iP̂x y; :ð Þ x,tð Þ~y; :ð Þ x+1,tð Þ. By taking
the logarithm of Eq. (14) and simplifying we obtain the effective
Hamiltonian for each step of the walk on the discrete position space,

Ĥsx hð Þ~ v̂x

sin v̂xð Þ

cos hð Þsin P̂x
� �

{i sin hð Þcos P̂x
� �

sin hð Þsin P̂x
� �

{sin hð Þsin P̂x
� �

cos hð Þsin P̂x
� �

zi sin hð Þcos P̂x
� �

" #
:ŝx:

ð15Þ

Here v̂x~cos{1 cos hð Þsin P̂x
� �� �

and the differential operator form
of the Hamiltonian [Eq. (15)] is,

Ĥsx hð Þ~{i
sin hð Þ cos hð Þ

cos hð Þ {sin hð Þ

" #
: L
Lx

z
0 i

{i 0

" #
sin hð Þ~{iâx

: L
Lx

zb̂xsin hð Þ:

ð16Þ

The matrices âx and b̂x are Hermitian and satisfy, â2
x~b̂2

x~ and

âxb̂x~{b̂xâx. We can obtain the Dirac form of the Hamiltonian by
introducing rotation R̂y h=2ð Þ~e{ih2ŝy to the Eq. (16),

Ĥ’sx hð Þ~R̂y
h

2

� 	
Ĥsx hð ÞR̂{

y
h

2

� 	
~{iŝx

: L
Lx

{ŝysin hð Þ: ð17Þ

The Hamiltonian given by Eq. (17) is identical to the two-component
Dirac Hamiltonian, with the mass equivalent term, m 5 2sin(h) and
the velocity equivalent term, c 5 1.

Basis states of ŝy as position translation state. For the basis states

zj isy
~

1ffiffiffi
2
p 1

i

� �
; {j is2

~
1ffiffiffi
2
p 1

{i

� �
of Pauli operators ŝy~

0 {i
i 0

� �
as the translation states, we will choose jyæ where y[II as

the position space. The coin operation for the walk will be,

B̂sy hð Þ~cos hð Þzj isy
zh jzsin hð Þzj isy

{h j

{sin hð Þ{j isy
zh jzcos hð Þ{j isy

{h j,
ð18Þ

and the shift operator will be,

Ŝsy:
X

y

zj isy
zh j6 y{1j i yh jz {j isy

{h j6 yz1j i yh j
h i

: ð19Þ

The effective operator for each step of the walk will be,
Ŵsy hð Þ~Ŝsy B̂sy hð Þ6

� �
. When the initial state of the particle at

the origin, Yinj i~ y; 0,0ð Þ
y: 0,0ð Þ

� �
, the state at time t will be,

Y tð Þj i~ Ŵsy hð Þ
� �t

Yinj i~
P

y

y; y,tð Þ
y: y,tð Þ

" #
, ð20Þ

where Ŵsy hð Þ when written in the basis formed by the eigenvectors
of ŝz is,

Ŵsy hð Þ: e{iP̂y

2

cos hð Þzsin hð Þ {i cos hð Þzi sin hð Þ

i cos hð Þzi sin hð Þ cos hð Þ{sin hð Þ

" #
z

e iP̂y

2

cos hð Þ{sin hð Þ i cos hð Þzi sin hð Þ

{i cos hð Þzsin hð Þ cos hð Þzsin hð Þ

" #
:e{iĤsy hð Þ:

ð21Þ

Here P̂y is the position displacement operator whose action on state

y#(")(y, t) is local such that e+iP̂y y; :ð Þ y,tð Þ~y; :ð Þ y+1,tð Þ. By taking
logarithm of the Eq. (21) and simplifying we obtain the the effective
Hamiltonian form for each step of the walk on the discrete position
space,

Ĥsy hð Þ~ v̂y

sin v̂y
� �

cos hð Þsin P̂y
� �

{i sin hð Þcos P̂y
� �

{i sin hð Þsin P̂y
� �

{i sin hð Þsin P̂y
� �

cos hð Þsin P̂y
� �

zi sin hð Þcos P̂y
� �

" #
:ŝy:

ð22Þ

Here v̂y~cos{1 cos hð Þsin P̂y
� �� �

and the differential operator form
of the Hamiltonian [Eq. (22)] is,
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Ĥsy hð Þ~{i
sin hð Þ {i cos hð Þ

i cos hð Þ {sin hð Þ

" #
: L
Ly

z
0 1

1 0

" #
sin hð Þ~{iây

: L
Ly

zb̂ysin hð Þ:

ð23Þ

The matrices ây and b̂y are Hermitian and satisfy â2
y~b̂2

y~ and

âyb̂y~{b̂yây .
We obtain the Dirac form of the Hamiltonian by introducing

rotation R̂x h=2ð Þ~e{ih2ŝx to the Eq. (23),

Ĥ’sy hð Þ~R̂{
x

h

2

� 	
Ĥsy hð ÞR̂x

h

2

� 	
~{iŝy

: L
Ly

zŝx sin hð Þ: ð24Þ

The Hamiltonian given by the Eq. (24) is identical to the two-com-
ponent Dirac Hamiltonian with the mass equivalent term, m 5

sin(h) and velocity term, c 5 1. When the coin operation parameter
h 5 0, all the three forms of Hamiltonian obtained for DQW evolu-
tion will be identical to the two-component Dirac Hamiltonian for
the massless particle.

The Hamiltonian for a walk on two- and three-dimensional
lattice. Square lattice. A simple 2D lattice structure is a square
lattice with four direction for propagation at each position and the
evolution can be quantized along the axis, X and Z [Fig. 1(a)]. One of
the well studied schemes for 2D DQW is the Grover walk on a four-
state particle with the basis states as j0æ, j1æ, j2æ, and j3æ34,35. Each step
of Grover walk on a 2D is realized using the Grover diffusion
operator,

Ĝ~
1
2

{1 1 1 1

1 {1 1 1

1 1 {1 1

1 1 1 {1

2
6664

3
7775, ð25Þ

as coin operation followed by a shift operator,

ŜG:
X
x,z

0j i½ 0h j6 x{1,z{1j i x,zh jz 1j i 1h j6 x{1,zz1j i x,zh j

z 2j i 2h j6 xz1,z{1j i x,zh jz 3j i 3h j6 xz1,zz1j i x,zh j�
ð26Þ

on a particle in a specific initial state, Y4s
in

�� �
~

1
2

0j i{ 1j i{ 2j iz 3j i½ �.

The state after t steps of the Grover walk, ŜG Ĝ6
� �� �t

,

YG
t

�� �
~
Xt

x~{t

Xt

z~{t

b
1ð Þ
x,z,tð Þ 0j izb2

x,z,tð Þ 1j izb
3ð Þ
x,z,tð Þ 2j izb4

x,z,tð Þ 3j i
h i

6 x,zj i:
ð27Þ

Here b(x, y, t)’s are given by the quadrupled iterative relation
coupling the X and Z axis

b 1ð Þ x,z,tð Þ~ 1
2

{b
1ð Þ
xz1,zz1,t{1ð Þzb

2ð Þ
xz1,zz1,t{1ð Þ

h
zb

3ð Þ
xz1,zz1,t{1ð Þzb

4ð Þ
xz1,zz1,t{1ð Þ

i
,

ð28aÞ

b 2ð Þ x,z,tð Þ~ 1
2

b
1ð Þ
xz1,z{1,t{1ð Þ{b

2ð Þ
xz1,z{1,t{1ð Þz

h
b

3ð Þ
x{1,z{1,t{1ð Þzb

4ð Þ
xz1,z{1,t{1ð Þ

i
,

ð28bÞ

b 3ð Þ x,z,tð Þ~ 1
2

b
1ð Þ
x{1,zz1,t{1ð Þzb

2ð Þ
x{1,zz1,t{1ð Þ{

h
b

3ð Þ
x{1,zz1,t{1ð Þzb

4ð Þ
x{1,zz1,t{1ð Þ

i
,

ð28cÞ

b 4ð Þ x,z,tð Þ~ 1
2

b
1ð Þ
x{1,z{1,t{1ð Þzb

2ð Þ
x{1,z{1,t{1ð Þz

h
b

3ð Þ
x{1,z{1,t{1ð Þ{b

4ð Þ
x{1,z{1,t{1ð Þ

i
:

ð28dÞ

DQW on a square lattice using two-state particle can also be
realized by quantizing the evolution using different Pauli basis states
as translation state for each axis in the lattice structure. That is, each
step of walk on a square lattice comprise of evolution in Z-axis with
Pauli basis of ŝz operator as translational state followed by the
evolution in the X-axis with Pauli basis of ŝx operator as translational
state,

Ŵsq hð Þ~Ŵsq
sx

hð ÞŴsq
sz

hð Þ: ð29Þ

Here Ŵsq
sa

hð Þ~Ŝsq
sa

B̂sa
hð Þ6 X6 Z

� �
with a 5 x, z and the shift

operators for Z- and X-axis are,

Ŝsq
sz
:
X
x,z

zj isx
zh j6 x,z{1j i x,zh jz {j isz

{h j6 x,zz1j i x,zh j
h i

:

ð30aÞ

Ŝsq
sx
:
X
x,z

zj isx
zh j6 x{1,zj i x,zh jz {j isx

{h j6 xz1,zj i x,zh j
h i

:

ð30bÞ

The choice of a particular Pauli basis for particular axis is purely
conventional. If the initial state of the particle on a square lattice at

origin (x, z) 5 (0, 0) is Yinj i~ 1ffiffiffi
2
p ;j izi :j i½ �6 0,0j i, the state after

t steps,

Ytj i~ Ŵsq hð Þ
� �t

Yinj i

~
Xt

x~{t

Xt

z~{t

a
xð Þ
x,z,tð Þ ;j iza

zð Þ
x,z,tð Þ :j i

h i
6 x,zj i:

ð31Þ

When h~0, a
1ð Þ
x,z,tð Þ and a

2ð Þ
x,z,tð Þ are given by the coupled iterative

relations

Figure 1 | Schematic for the DTQW showing the direction of evolution.
(a) Square lattice with two direction for propagation along each

quantization axis, X and Z. (b) Cubic lattice with two direction of

propagation along each quantization axis, X, Y and Z. Evolution along each

quantization axis, X, Y and Z are defined using basis states of the Pauli

operators ŝx , ŝy and ŝz as position translation states.
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a
1ð Þ
x,z,tð Þ~

1
2

a
1ð Þ
xz1,zz1,t{1ð Þza

1ð Þ
xz1,z{1,t{1ð Þz

h
a

2ð Þ
x{1,zz1,t{1ð Þ{a

2ð Þ
x{1,z{1,t{1ð Þ

i
,

ð32aÞ

a
2ð Þ
x,z,tð Þ~

1
2

a
1ð Þ
xz1,zz1,t{1ð Þ{a

1ð Þ
xz1,z{1,t{1ð Þz

h
a

2ð Þ
x{1,zz1,t{1ð Þza

2ð Þ
x{1,z{1,t{1ð Þ

i
:

ð32bÞ

From Eqs. (32) and Eqs. (28) we can note that for both, two-state
walk and the Grover walk, the amplitude at any position (x, z) for a
given time t is dependent on the amplitude at the four diagonally
opposite sites at time t 2 1.

In Fig. 2(a), the probability distribution of the 50 step DQW on a
square lattice using the Pauli basis scheme without the external coin
operation (h 5 0) is shown. We notice that the probability distri-
bution is identical to the distribution obtained for the Grover walk on
a four-state particle34,39 and for the alternative walk on a two-state

particle with initial state,
1ffiffiffi
2
p ;j izi :j i½ � using Hadamard operator

as the coin operation for each dimension (see Figure 1 in Ref. 38). The
main reason for this is the fact that the basis states of ŝz is also a
superposition of a basis states of the ŝx which inherently introduces
an effect of quantum coin operation. Therefore, the operator

Ŵsq
sx

0ð ÞŴsq
sz

0ð Þ
h it

continues to evolve the particle in superposition

of position space bringing in intricate features into the interference
effect which is showing up in the probability distribution. Unlike the
Grover walk which is very specific to the initial state and the coin
operation, probability distribution with the two-state walk using the
Pauli basis can be controlled by introducing the coin operation (h ?
0) and/or using different initial state of the particle. In Fig. 2(b) the
probability distribution after 50 step DQW with an external coin
operation with h 5 p/12 is show to squeeze the distribution towards
the diagonal of the square lattice and from this we can infer that the
coin operation can be effectively used to control the dynamics and
the probability distribution of the walk.

Two-component Hamiltonian for walk on a square lattice - The
unitary operator for each step of a two-state DQW on a square lattice
is Ŵsq hð Þ~Ŵsq

sx
hð ÞŴsq

sz
hð Þ. For the initial state of the particle at

origin (x, z) 5 (0, 0), Y
sq
in

�� �
~

y; 0,0,0ð Þ
y: 0,0,0ð Þ

� �
, the state at any time t

will be,

Ysq tð Þj i~ Ŵsx hð ÞŴsz hð Þ
� �t

Y
sq
in

�� �
~
X
x,z

y; x,z,tð Þ
y: x,z,tð Þ

� �
, ð33Þ

where Ŵsz hð Þ and Ŵsx hð Þ are given by Eqs. (3) and (14), respect-
ively. The effective Hamiltonian for each step of the walk on a square

lattice is the sum of the Hamiltonian for evolution in each dimension.
In differential operator form it will be,

Ĥsq hð Þ~Ĥsx hð ÞzĤsz hð Þ

~{i âx
: L
Lx

zâz
: L
Lz

� 	
z b̂xzb̂z


 �
sin hð Þ:

ð34Þ

Here the matrix âz , âx , b̂z , b̂x are same as that in Eqs. (8) and (16).
As the evolution in one dimension is followed by the other, the
rotational invariance property of the Hamiltonian can be used inde-
pendently to the Hamiltonian for each dimension resulting in,

Ĥsq’ hð Þ~Ĥ’sx hð ÞzĤ’sz hð Þ~{i ŝx
: L
Lx

zŝz
: L
Lz

� 	
, ð35Þ

where Ĥ’sz hð Þ and Ĥ’sx hð Þ are same as Eqs. (10) and (17). As
b̂xzb̂z~0 this Hamiltonian is structurally identical to the two-com-
ponent Dirac Hamiltonian for a massless particle on a two-dimen-
sional space. In the Hamiltonian obtained from 1D DQW evolution
operator, the mass equivalent term becomes zero only when h 5 0,
but from the 2D evolution operator we obtain an Hamiltonian which
resembles the massless Dirac Hamiltonian even for non-zero value of
h. However, by choosing basis state of ŝy operator as the position
translation state for one of the dimension and basis state of ŝz or ŝx

operator for an other dimension we can obtain an Hamiltonian with
non-zero mass equivalent term.

Cubic lattice. A simple 3D lattice is a cubic lattice with six direction
for propagation at each position and the evolution can be quantized
along the axis, X, Y, and Z [Fig. 1(b)]. By evolving the two-state
particle in one axis followed by the evolution in the other two axis
using different Pauli basis as position translation state, a two-state
walk on a cubic lattice can be realized. That is,

Ŵcub hð Þ~Ŵcub
sy

hð ÞŴcub
sx

hð ÞŴcub
sz

hð Þ: ð36Þ

Here Ŵcub
sj

hð Þ~Ŝcub
sj

B̂sj hð Þ6 X6 Y6 Z

� �
with j 5 {y, x, z}

where the shift operator for evolution along the Z, X, and Y axis will
be

Ŝcub
sz

:
X
x,y,z

½zj isz
zh j6 x,y,z{1j i x,y,zh jz {j isz

{h j

6 x,y,zz1j i x,y,zh j�,
ð37aÞ

Ŝcub
sx

:
X
x,y,z

½zj isx
zh j6 x{1,y,zj i x,y,zh jz {j isx

{h j

6 xz1,y,zj i x,y,zh j�,
ð37bÞ

Figure 2 | Probability distribution of DQW on square lattice without and with coin operation. Probability distribution after a DQW on a two-

state particle at the origin (x, z) 5 (0, 0) with initial state, Yinj i~ 1ffiffiffi
2
p ;j izi :j i½ �6 0,0j i on a square lattice using basis state of ŝx and ŝz as position

translation state for evolution along X and Z axis, respectively. The distribution is after 50 step of the walk. (a) The distribution is after the evolution

without using a coin operation (h 5 0) and same distribution is obtained for Grover walk (with the specific initial state). (b) The distribution is after the

evolution with the coin operation h 5 p/12 in both the axis.
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Ŝcub
sy

:
X
x,y,z

½zj isy
zh j6 x,y{1,zj i x,y,zh jz

{j isy
{h j6 x,yz1,zj i x,y,zh j�:

ð37cÞ

For the initial state of the particle at origin (x, y, z) 5 (0, 0, 0),

Ycub
in

�� �
~

y; 0,0,0,0ð Þ
y: 0,0,0,0ð Þ

� �
, the state at any time t,

Ycub tð Þ
�� �

~ Ŵsy hð ÞŴsx hð ÞŴsz hð Þ
� �t

Ycub
in

�� �
~
X
x,y,z

y; x,y,z,tð Þ
y: x,y,z,tð Þ

� �
,

ð38Þ

where Ŵsz hð Þ, Ŵsx hð Þ and Ŵsy hð Þ are given by Eqs. (3), (14) and
(21), respectively. Therefore the effective Hamiltonian for each step
of the walk on a cubic lattice is,

Ĥcub hð Þ~Ĥsy hð ÞzĤsx hð ÞzĤsz hð Þ

~{i ây
: L
Ly

zâx
: L
Lx

zâz
: L
Lz

� 	
zb̂y sin hð Þ:

ð39Þ

Here the matrix âz , âx, ây , b̂y are same as that in Eqs. (8), (16), and

(23) (where b̂xzb̂z~0). As the evolution in one dimension is fol-
lowed by the other, the rotational invariance property of the
Hamiltonian can be used independently to the Hamiltonian for each
dimension on a cubic lattice resulting in,

Ĥcub0 hð Þ~Ĥ0sx
hð ÞzĤ0sy

hð ÞzĤ0sz
hð Þ

~{i ŝx
: L
Lx

zŝy
: L
Ly

zŝz
: L
Lz

� 	
zb̂y sin hð Þ,

ð40Þ

where Ĥ’sz hð Þ, Ĥ’sx hð Þ, and Ĥ’sy hð Þ are same as Eqs. (10), (17) and
(24). The Hamiltonian from the evolution operator for DQW on a
cubic lattice is structurally identical to the two-component Dirac
Hamiltonian for a particle on a three-dimensional space. Due to
the fact that the basis state of one of the Pauli operator is also a
superposition of the basis states of the other Pauli operator, Pauli
operator, the effect of the quantum coin operation is inherently
introduced. Therefore, even in absence of external coin operation
(h 5 0), the particle will continue to evolve in superposition of
different location at each step bringing in the intricate interference
effect into the evolution.

Triangular lattice. The triangular lattice is a 2D structure with six
direction for propagation at each position. As shown in Fig. 3(a),
each position can be labeled using indices (x, y) of the X and Y spatial
dimensions and the evolution can be quantized along three axis R, S,
and T as shown in Fig. 3(b) using the basis states zj isj

and {j isj
of

the Pauli operators ŝj where j 5 {x, y, z} as position translation states.
Because of the three quantization axis for evolution on a 2D lattice,
the evolution along one of the spatial dimension will also result in the
evolution along the other spatial dimension. In our scheme for DQW
on a triangular lattice we will define the evolution such that, along the
quantization axis R, the shift is only along the X spatial dimension and
along the quantization axis S and T, the shift in X spatial dimension
will also result in shift along the Y spatial dimension and vice versa.

In Fig. 4(a), the schematic for the evolution in one quantization
axis followed by the other to implement each step of the walk is show.
The encircled positions are the points in position space to which the
quantum states evolve in superposition during one step of the walk.
The choice of the order of the basis states as translation state to evolve
the particle and the labelling of the position space is purely conven-
tional. For the scheme used in this report, each step of the walk on a
triangular lattice composes of the operation,

Ŵtri hð Þ~Ŵtri
sy

hð ÞŴtri
sx

hð ÞŴtri
sz

hð Þ: ð41Þ

Here Ŵtri
sj

hð Þ~Ŝtri
sj

B̂sj hð Þ6 X6 Y6 Z

� �
with j 5 {y, x, z} where

the shift operator for evolution along the quantization axis R, S, and T
are,

Ŝtri
sz
:
X
x,y

½zj isz
zh j6 xz2,yj i x,yh jz

{j isz
{h j6 x{2,yj i x,yh j�,

ð42Þ

Ŝtri
sx
:
X
x,y

½zj isx
zh j6 xz1,yz1j i x,yh jz

{j isx
{h j6 x{1,y{1j i x,yh j�,

ð43Þ

Ŝtri
sy
:
X
x,y

½zj isy
zh j6 xz1,y{1j i x,yh jz

{j isy
{h j6 x{1,yz1j i x,yh j�:

ð44Þ

For the initial state of the particle at origin (x, y) 5 (0, 0),

Ytri
in

�� �
~

y; 0,0,0ð Þ
y: 0,0,0ð Þ

� �
, the state at any time t,

Ytri tð Þ
�� �

~ Ŵtri
sy

hð ÞŴtri
sx

hð ÞŴtri
sz

hð Þ
h it

Ytri
in

�� �
~
X
x,y

y; x,y,tð Þ
y: x,y,tð Þ

� �
: ð45Þ

Here Ŵtri
sz

hð Þ is identical to Eq. (3) with a replacement of P̂z by 2P̂x,

Ŵtri
sx

hð Þ is identical to Eq. (14) with a replacement of P̂x by P̂xzP̂y

and Ŵtri
sy

hð Þ is identical to Eq. (21), with a replacement of P̂y by

P̂x{P̂y . Due to the fact that the basis state of one of the Pauli operator
is also a superposition of the basis states of the other Pauli operator,
inherently introducing the effect of the quantum coin operation.
Therefore, even in absence of the external coin operation (h 5 0)
the particle continue to evolve in superposition of different location
at each step bringing in the intricate interference effect into the
evolution. However, a coin operation with different h for each axis
can be extensively used for the evolution to get addition freedom to
control the dynamics and obtain the desired probability distribution.
In Fig. 5(a) and 5(b), we show the probability distribution of a 40 step

DQW without an external coin operation Ŵtri 0ð Þ~Ŵtri
sy

0ð Þ
h

Ŵtri
sx

0ð ÞŴtri
sz

0ð Þ� on a two-state particle initially in state j#æ and
j"æ, respectively. We can see that the probability distribution in
Fig. 5(a) and Fig. 5(b) are not symmetric distribution in position
space but are symmetric to each other. In Fig. 5(c), we show that
introducing a external coin operation along only one of the quant-

ization axis Ŵtri
sy

0ð ÞŴtri
sx

p=4ð ÞŴtri
sz

0ð Þ
h i

, the probability distribution

alters significantly.
The effective Hamiltonian for a quantum walk on a triangular

lattice is,

Ĥtri hð Þ~Ĥtri
sy

hð ÞzĤtri
sx

hð ÞzĤtri
sz

hð Þ, ð46Þ

where Ĥtri
sz

hð Þ, Ĥtri
sx

hð Þ, and Ĥtri
sy

hð Þ are the Hamiltonian for evolution

along quantization axis R, S, and T with basis state of ŝz , ŝx, and ŝy as
translation state give by,

Ĥtri
sz

hð Þ~{i â1
z
:2

L
Lx

zâ2
z
: L2

Lx2

� 	
zb̂1

z sin hð Þ, ð47Þ

Ĥtri
sx

hð Þ~{i â1
x
: L
Lx

zâ2
x
: L
Ly

zâ3
x
: L2

LxLy

� 	
zb̂1

x sin hð Þ, ð48Þ
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Ĥtri
sy

hð Þ~{i â1
y
: L
Lx

zâ2
y
: L
Ly

zâ3
y
: L2

LxLy

� 	
zb̂1

y sin hð Þ: ð49Þ

See Methods for the matrices â and b̂, they are Hermitian and satisfy
the conditions, â2~b̂2~1 and âb̂~{b̂â. Due to the non-ortho-
gonal nature of the spatial axis for evolution using different basis
states, we don’t get an Hamiltonian which is structurally identical to
the two-component Dirac Hamiltonian as we obtained for a
quantum walk on a square and cubic lattice. However, the
Hamiltonian with the second order differential operators can be
effectively used to describes the two-state quantum walk on triangu-
lar lattice.

Kagome lattice. Kagome lattice structure can also be labeled the same
way as the triangular lattice. The evolution operator and its
Hamiltonian form in each basis will be in the same form as presented
for triangular lattice. But, unlike triangular lattice which has three
quantization axis at each lattice site, kagome lattice shown in Fig. 4(b)
has only two quantization axis with four direction of propagation for
the walk at each lattice site. The two quantization axis at each lattice
site is not the same for all lattice sites. As shown in Fig. 4(b), lattice
sites o, p, and q have axis S and R (ŝx and ŝz), S and T (ŝx and ŝy), and
T and R (ŝy and ŝz) as quantization axis, respectively. Therefore, to
implement each step of DQW in kagome lattice should compose of
evolutions along different axis in particular order depending on the
initial position of the particle. For example, if the initial position is p
(as marked in Fig. 4(b)), each step of DQW can be realized by
Ŵkag hð Þ~Ŵkag

sx
hð ÞŴkag

sz
hð ÞŴkag

sy
hð Þ.

Discussion
Motivated by the recent advancements in the theoretical analysis and
the experimental implementation of the DQW, we have presented
the scheme for implementing DQW on different 1D, 2D, and 3D
lattice structures using different Pauli basis states as the position
translation states for each dimension. Our scheme using Pauli basis
which was briefly presented for evolution on square lattice39,42 has
now been extended in this report for evolution on cubic, triangular,
and kagome lattice. During the shift from one pair of the Pauli basis
state as the position translation state to the other for the evolution on
2D and 3D lattice, an effect of inherent quantum coin operation of
h 5 p/4 is seen. In various physical setting, it is quite common to use
Pauli basis states as the position translation states to describe the
dynamics, for example, in quantum optics and optical lattice44.
This makes our scheme an experimentally realizable one in higher
dimensions without the use of an extra resource to implement
external quantum coin operation. However, an external coin opera-
tion can be used as an additional resource to tailor the dynamics.
From this we can conclude that it can be straight away extended to
other Bravais lattice and to higher dimensions by simply permuting
the three Pauli basis states as position translation states for each
evolution axis with the minimum resources.

The dynamics in many quantum systems are governed by the
Hamiltonians and the Hamiltonian for the DQW was also recently
obtained in the basis of Fourier modes and used to explore topo-
logical phases16. In our approach, without changing to the Fourier
modes, starting from the unitary operators used for the evolution we
obtained three different forms of the Hamiltonian for walk on 1D

Figure 3 | Schematic showing the labelling and evolution axis for triangular lattice. Triangular lattice structure with (a) labeling of lattice positions in

the spatial coordinates and (b) the three axis, R, S, and T used as quantization axis for the evolution using different Pauli basis states as translation states.

Figure 4 | Schematic for evolution of DQW on triangular and kagome lattice. (a) The triangular lattice, starting from the middle, the arrow marks

indicates the shift in position space during one step of DQW evolution (evolution in Z axis followed by the evolution in the Y and X axis). (b) Kagome

lattice structure with two axis of propagation at each lattice site. From lattice sites o, p, and q, we can see that they are associated with different

combination of quantization axis. Starting from position p, the arrow marks show the shift in position space during one step of DQW evolution. The final

positions are encircled.
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discrete-position space using different Pauli basis states as the posi-
tion translation states and this was extended to different 2D and 3D
lattices. In the unit position incremental setting on a line, square
lattice and cubic lattice the differential operator form of the Hamil-
tonian was shown to be identical to the two-component Dirac
Hamiltonian. On triangular lattice we showed that and Hamilto-
nian contains a second order deferential term deviating from the
Dirac-like structure. Though the similarity of DQW with the Dirac
equation was established earlier17,40–44 using different approaches, the
connection was at the continuum limit and restricted to 1D for a very
small or vanishing value of the quantum coin operation parameter h.
Very recently, when this manuscript was already in a complete form,
a new result establishing the connection between the Dirac equation
and quantum walk in higher dimension was reported45. Using dif-
ferent combination of techniques, the two-component Dirac equa-
tion is discretized to arrive at the two-state DQW in 1D and 2D
position space. To establish the connection for the 3D space, they
changed to four-component Dirac equation. In this report our
approach is different, we start from the two-state DQW on 1D,
2D, and 3D lattice and arrive at the two-component Dirac-like
Hamiltonian for all value of h (massless and massive case) as long
as the evolution axis in the lattice are orthogonal to each other (line,
square and cubic). However, both these works compliment each
other by starting from the different initial from and establishing
the connections in 1D and 2D position space.

This scheme for walk on different lattices and description of
dynamics in Hamiltonian form helps to further explore topological
phase, establish connection between physical process in nature
which are generally not 1D and does not involve larger internal
(more than two) dimension of the particle. Most importantly, the
structural similarity DQW with the two-component Dirac
Hamiltonian for particle in 1D, 2D and 3D space can lead to more
intriguing studies on the relativistic effects no change required
quantum walks and the role DQW can play to model and simulate
the relativistic effects in the laboratory settings. The Dynamics in
many of the quantum condensed matter systems are governed by the
usual tight-binding Hamiltonian that describes the movement or the
particle to a neighbouring site or by the Dirac-like Hamiltonian (for
example, graphene). This clearly establishes that DQW can be used
to model the dynamics in a wide spectrum of physics systems gov-
erned by Dirac-like Hamiltonian to the relativistic dynamics.

Methods
The Hamiltonian and its differential form. To obtain the effective Hamiltonian

form, we will take the logarithm of Ŵsz hð Þ~e{iĤsz hð Þ,

{iĤsz hð Þ~ ln
cos hð Þe{iP̂z sin hð Þe{iP̂z

{ sin hð ÞeziP̂z cos hð ÞeziP̂z

" #
~ ln Â

� �
~V̂ ln l̂sz


 �
V̂{1: ð50Þ

Here l̂sz ~
l̂{

z 0
0 l̂z

z

" #
with l+

z ~ cos hð Þ cos P̂z
� �

+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 hð Þ cos2 P̂z

� �
{1

q
~

cos v̂zð Þ+ i sin v̂zð Þ~e+iv̂z . The matrix

V̂~
1

sin hð ÞeiP̂z

cos hð ÞeiP̂z {e{iv̂ cos hð ÞeiP̂z{eiv̂

sin hð ÞeiP̂z sin hð ÞeiP̂z

" #
;

V̂{1~
1

2i sin v̂zð Þ
sin hð ÞeiP̂z eiv̂{ cos hð ÞeiP̂z

{ sin hð ÞeziP̂z {e{iv̂z cos hð ÞeiP̂z

" # ð51Þ

are composed of eigenvectors of Â and its inverse, respectively. By substituting these
elements into Eq. (50) and simplifying we obtain,

Ĥsz hð Þ~ v̂

sin v̂ð Þ
cos hð Þ sin P̂z

� �
i sin hð Þe{iP̂z

{i sin hð ÞeiP̂z { cos hð Þ sin P̂z
� �

2
4

3
5

~
v̂

sin v̂ð Þ
cos hð Þ sin P̂z

� �
{i sin hð Þe{iP̂z

{i sin hð ÞeiP̂z cos hð Þ sin P̂z
� �

2
4

3
5:sz :

ð52Þ

The differential form of the preceding expression in the unit spatial incremental

setting can be obtained by analyzing the effect of the operators e+iP̂z and sin(P̂z) in the
matrix on the state y#(")(z, t) 5 y(z, t),

sin P̂z
� �

y z,tð Þ~i
e{iP̂z {eiP̂z

2

 !
y z,tð Þ

~
i
2

y z{1,tð Þ{y zz1,tð Þð Þ

~{
i
2

y zz1,tð Þ{y z{1,tð Þð Þ:

ð53Þ

Writing the central difference form in the preceding expression as differential
operator we obtain,

sin P̂z
� �

y z,tð Þ<{i
L
Lz

y z,tð Þ[ sin P̂z
� �

<{i
L
Lz

:P̂z : ð54Þ

Similarly,

e+iP̂z y z,tð Þ~y z+1,tð Þ~y z+1,tð Þ{y z,tð Þzy z,tð Þ

< +
L
Lz

z1

� 	
y z,tð Þ[e+iP̂z < +

L
Lz

z1

� 	
:

ð55Þ

Ignoring the higher order terms in the expansion of sin(v̂) we get,
v̂

sin v̂ð Þ<1.

Therefore, substituting Eq. (54) and (55) into Eq. (52) we obtain the differential form
of the Hamiltonian operator which is identical to the two-component Dirac
Hamiltonian.

For evolution with basis states of ŝx and ŝy Pauli operators as position translation
states, the same procedure can be used to obtain Eqs. (15) and (22) by replacing P̂z by
P̂x and P̂y , respectively. Here using j g {x, y} we arrive at the differential form of the
operators which upon substitution we obtain an Hamiltonian given by Eqs. (16) and
(23) which are structurally similar to the two-component Dirac Hamiltonian. One of
the useful relation to arrive at the differential operator form is,

cos hð Þ sin P̂
� �

+i sin hð Þ cos P̂
� �� �

y j,tð Þ

~
i
2

cos hð Þ y j{1,tð Þ{y jz1,tð Þ½ �+ sin hð Þ y j{1,tð Þzy jz1,tð Þ½ �½ �

~
i
2

cos hð Þ+ sin hð Þð Þy j{1,tð Þ{ cos hð Þ+ sin hð Þð Þy jz1,tð Þ½ �,

ð56Þ

adding and subtracting the RHS by
i
2

cos hð Þ+ sin hð Þð Þy j,tð Þz i
2

cos hð Þ+ð
sin hð ÞÞy j,tð Þ we get a difference form which can be approximated to the differential
operator such that,

Figure 5 | Probability distribution after 40 step of DQW on triangular lattice. (a) The initial state Yinj i~ ;j i6 0,0j i and the walk is evolved

without a coin operation. (b) The initial state Yinj i~ :j i6 0,0j i and the walk is evolved without an external coin operation. (c) The initial state

Yinj i~ :j i6 0,0j i and the walk is evolved with the coin operation along one of the quantization axis, Ŵtri hð Þ~Ŵtri
sy

0ð ÞŴtri
sx

p=4ð ÞŴtri
sz

0ð Þ. We can see that

(a) is symmetric to (b) and an external coin operation alters the interference pattern significantly.
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cos hð Þ sin P̂
� �

+i sin hð Þ cos P̂
� �

<
i
2

cos hð Þ+ sin hð Þð Þ {
L
Lj

z1

� �
{ cos hð Þ+ sin hð Þð Þ L

Lj
z1

� �� �
,

~i { cos hð Þ L
Lj
+ sin hð Þ

� �
:

ð57Þ

Differential form of the Hamiltonian for evolution on triangular lattice. For
triangular lattice P̂z in Eq. (5) is replaced by 2P̂x , P̂x in Eq. (15) is replaced by P̂xzP̂y

and P̂y in Eq. (22), is replaced by P̂x{P̂y . Below we obtain the differential form of the
operators in finite position incremental setting,

sin 2P̂x
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Considering
v̂

sin v̂ð Þ<1 and substituting the differential form of the operators we

obtain,
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Using the relations,
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Using the relations,
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