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Quantum walks and Dirac cellular automata on a
programmable trapped-ion quantum computer
C. Huerta Alderete 1,2✉, Shivani Singh3,4, Nhung H. Nguyen1, Daiwei Zhu 1, Radhakrishnan Balu 5,6,

Christopher Monroe1, C. M. Chandrashekar3,4 & Norbert M. Linke1

The quantum walk formalism is a widely used and highly successful framework for modeling

quantum systems, such as simulations of the Dirac equation, different dynamics in both the

low and high energy regime, and for developing a wide range of quantum algorithms. Here

we present the circuit-based implementation of a discrete-time quantum walk in position

space on a five-qubit trapped-ion quantum processor. We encode the space of walker

positions in particular multi-qubit states and program the system to operate with different

quantum walk parameters, experimentally realizing a Dirac cellular automaton with tunable

mass parameter. The quantum walk circuits and position state mapping scale favorably to a

larger model and physical systems, allowing the implementation of any algorithm based on

discrete-time quantum walks algorithm and the dynamics associated with the discretized

version of the Dirac equation.
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Quantum walks (QWs) are the quantum analog of classical
random walks, in which the walker steps forward or
backward along a line based on a coin flip. In a QW, the

walker proceeds in a quantum superposition of paths, and the
resulting interference forms the basis of a wide variety of quan-
tum algorithms, such as quantum search1–5, graph isomorphism
problems6–8, ranking nodes in a network9–12, and quantum
simulations, which mimic different quantum systems at the low
and high energy scale13–22. In the discrete-time QW (DQW)23,24,
a quantum coin operation is introduced to prescribe the direction
in which the particle moves in position space at each discrete step.
In the continuous-time QW (CQW)25,26, one can directly define
the walk evolution on position space itself using continuous-time
evolution. We focus on DQWs and their implementation on gate-
based quantum circuits in this work.

DQWs can be realized directly on lattice-based quantum sys-
tems where position space matches the discrete lattice sites. Such
implementations have been reported with cold atoms27,28 and
photonic systems29–32. In trapped ions, a DQW has been
implemented by mapping position space to locations in phase
space given by the degrees of freedom associated with the har-
monic motion of the ion in the trap33–35. All these physical
implementations have followed an analogue quantum simulation
approach. However, implementing QWs on a circuit-based sys-
tem is crucial to explore the algorithm applications based on
QWs. The implementation of a DQW on a three-qubit NMR
system36, a CQW on a two-qubit photonic processor37 and a
split-step QW on superconducting circuits38,39 are the circuit-
based implementations reported to date. To implement DQWs
on circuit-based quantum processors, its necessary to map the
position space to the available multi-qubit states. The range of the
walk is set by the available qubit number and gate depth. The
term Quantum Cellular Automaton (QCA) describes a unitary
evolution of a particle on a discretized space40–42, as occurs with
QWs. In this context, the one-dimensional Dirac cellular auto-
maton (DCA) has been derived from the symmetries of the QCA
showing how the dynamics of the Dirac equation emerges40–44.

Here we implement efficient quantum circuits for a DQW in
one-dimensional position space, which provide the time-
evolution up to five steps. We report the experimental realiza-
tion of a DQW on five qubits within a seven-qubit programmable
trapped-ion quantum computer45. With a tunable walk prob-
ability at each step we also show the experimental realization of a
DCA where the coin bias parameter mimics the mass term in the
Dirac equation. This will be central for discrete-time quantum
simulation of the dynamics associated with the relativistic motion
of a spin-1/2 particle in position space.

Results
Review of quantum walks and the connection to the Dirac
equation. The DQW consists of two quantum mechanical sys-
tems, an effective coin and the position space of the walker, as
well as an evolution operator, which is applied to both systems in
discrete time-steps. The evolution is given by a unitary operator
defined on a tensor product of two Hilbert spaces Hc �Hp

where, Hc is the coin Hilbert space spanned by the internal states
0j ic and 1j ic of a single qubit, while Hp represents the position
Hilbert space given by the position states xj i with x 2 Z encoded
in several qubits as described below. Here, the unitary quantum
coin toss operation, Ĉθ , is a unitary rotation operator that acts on
the coin qubit space,

Ĉθ ¼
cos θ �i sin θ

�i sin θ cos θ

� �
� Îp; ð1Þ

where θ is a coin bias parameter that can be varied at each step to

modify the QW path superposition weights. The conditional
position-shift operator, Ŝ, translates the particle to the left and
right conditioned by the state of the coin qubit,

Ŝ ¼ 0j ic ch0j �
X
x2Z

jx � 1ihxj þ j1ic ch1j �
X
x2Z

jx þ 1i xh j: ð2Þ

The state of the particle in position space after t steps of the walk,
is accomplished by the repeated action of the operator Ŵ ¼ ŜĈθ
on the initial state of the particle ψj ic ¼ α 0j ic þ β 1j ic at position
x = 0, as shown in Fig. 1,

Ψðx; tÞj i ¼ Ŵ
t
ψj ic � x ¼ 0j i� � ¼ X

x

ψ0
x;t

ψ1
x;t

" #
; ð3Þ

where ψ0ð1Þ
x;t denotes the left(right) propagating component of the

particle at time-step t. The probability of finding the particle at
position x and time t will be Pðx; tÞ ¼ jψ0

x;t j2 þ jψ1
x;t j2.

Recent works have shown a relationship between DQWs and
the Dirac equation14–18,43. Starting form a discrete-time evolution
operator and then moving from position space to momentum
space, Dirac kinematics can be recovered from the diagonal terms
of the unitary evolution operator for small momenta in the small
mass regime16–18. In contrast with these proposals in the Fourier
frame, we focus our implementation on the probability distribu-
tion of the DQW, which is analogous to the spreading of a
relativistic particle. To realize a DCA and recover the Dirac
equation, a split-step quantum walk, one form of the DQW, is
used40. Each step of a split-step quantum walk is a composition of
two half step evolutions with different coin biases and position-
shift operators,

Ŵss ¼ ŜþĈθ2
Ŝ�Ĉθ1

; ð4Þ
where the coin operation Ĉθj

, with j= 1, 2, is given in Eq. (1). The

split-step position-shift operators are,

Ŝ� ¼ 0j ic ch0j �
X
x2Z

jx � 1ihxj þ j1ic ch1j �
X
x2Z

jxi xh j; ð5Þ

Ŝþ ¼ 0j ic ch0j �
X
x2Z

jxihxj þ j1ic ch1j �
X
x2Z

jx þ 1i xh j: ð6Þ

Following Mallick40 and Kumar44, the particle state at time t and
position x after the evolution operation Ŵss is described by the
differential equation,

∂

∂t

ψ0
x;t

ψ1
x;t

" #
¼ cos θ2

cos θ1 �i sin θ1
i sin θ1 � cos θ1

� � ∂ψ0
x;t

∂x

∂ψ1
x;t

∂x

2
4

3
5

þ cosðθ1 þ θ2Þ � 1 �i sinðθ1 þ θ2Þ
�i sinðθ1 þ θ2Þ cosðθ1 þ θ2Þ � 1

� �
ψ0
x;t

ψ1
x;t

" #
:

ð7Þ
The tunability of parameters θ1 and θ2 on the split-step QW
permits the study of one-dimensional Dirac equations effectively,
within the low momentum subspace, for spin-1/2 particles40,44. It
is important to stress out that, the description of the Dirac
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Fig. 1 Discrete-time quantum walk scheme. Each step is composed of a
quantum coin operation, Ĉθ , with tunable effective coin bias parameters, θi,
followed by a shift operation, Ŝ.
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equation used here corresponds to the 2 × 2 representation, i.e. no
spin degree of freedom. For instance, the massless particle Dirac
equation can be recovered for cosðθ1 þ θ2Þ ¼ 1. Thereby, Eq. (7)
becomes i_½∂t � cos θ2ðcos θ1σz þ sin θ1σyÞ∂x�Ψðx; tÞ ¼ 0, which
is identical to the Dirac equation of a massless particle in the
relativistic limit46. In contrast, considering θ1= 0 and a very
small value of θ2 corresponds to the Dirac equation for particles
with small mass35,46 in the form i_½∂t � ð1� θ22=2Þσz∂xþ
iθ2σx�Ψðx; tÞ � 0.

At the same time, by choosing θ1= 0, the quantum walk
operator Ŵss given in Eq. (4) takes the form of the unitary
operator for a DCA40,

Ŵss ¼
cosðθ2ÞS� �i sinðθ2Þ1
�i sinðθ2Þ1 cosðθ2ÞSþ

� �
¼ UDCA: ð8Þ

Within this framework, θ2 determines the mass of the Dirac
particle. The split-step DQW described by the operator Ŵss is
equivalent to the two period DQW with alternate coin operations,
θ1 and θ2, when the alternate points in position space with zero
probability are ignored47. Therefore, all the dynamics of a DCA
can be recovered from the DQW evolution using Ŵ and
alternating the two coin operations. See Methods for a
comparison between DCA and the explicit solution of the Dirac
equation. Typical features of the Dirac equation in relativistic
quantum mechanics, such as the Zitterbewegung40 and the Klein
paradox48, are also dynamical features of the DCA, as well as the
spreading of the probability distribution and the entanglement of
localized positive-energy states. We note that these effects have
also been shown in direct analog simulations of the Dirac
equation with trapped ions35 and BECs49.

Experimental DQW implementation. To realize the DQW on a
system of qubits one must pick a mapping of the particle position
to the qubit space. As shown in50, there is no unique way to map
position states to multi-qubit states, so each circuit decomposi-
tion depends on the configuration adopted. A direct mapping of
each walker position to one qubit in the chain mimicking the
arrangement of the qubit array is inefficient in terms of qubit
number and gates required (the former grows linearly and the
latter quadratically with the position space size modeled). In
order to minimize resource use, we take advantage of a digital
representation to map the position space into a multi-qubit state
and re-order it in such a way that the state 0j i ð 1j iÞ of the last
qubit corresponds to even (odd) position numbers. This allows us
to minimize the changes needed in the qubit space configuration
during each step of the walk (see Fig. 2). To implement a
quantum walk in one-dimensional position Hilbert space of size
2n, (n+ 1) qubits are required. One qubit acts as the coin and the
other n qubits mimic the position Hilbert space with 2n− 1
positions of a symmetric walk about x ¼ 0j i. We note that the
particle can be started from any point in the position space,
however setting the initial state reduces the gate counting in the
circuit and hence reduces the overall error. The coin operation is

achieved by single-qubit rotations on the coin-qubit while the
shift operators are realized by using the coin as a control qubit to
change the position state during the walk.

We realize the walk on a chain of seven individual 171Yb+ ions
confined in a Paul trap and laser-cooled close to their motional
ground state45,51. Five of these are used to encode qubits in their
hyperfine-split 2S1/2 ground level. Single-qubit rotations, or R
gates, and two-qubit entangling interactions, or XX gates are
achieved by applying two counter-propagating optical Raman
beams to the chain, one of which features individual addressing
(see Methods for experimental details). We can represent up to 15
positions of a symmetric QW, including the initial position
x ¼ 0j i.
Based on this position representation a circuit diagram for the

DQW on five qubits with the initial state 0j ic � 0000j i is
composed for up to five steps, see Fig. 3. Each evolution step, Ŵ,
starts with a rotation operation on the coin-qubit, Ĉθj

, followed by

a set of controlled gates that change the position state of the
particle under Ŝ. Due to the gratuitous choice of position
representation used, it is enough to perform a single-qubit
rotation on the last qubit at every step, which could also be done
by classical tracking50.

Computational gates such as CNOT, Toffoli, and Toffoli-4 are
generated by a compiler which breaks them down into
constituent physical-level single- and two-qubit gates45. A circuit
diagram detailing the compiled building blocks is shown in
Methods. To prepare an initial particle state different from 0j ic it
is enough to perform a rotation on the coin-qubit before the first
step. In some cases this rotation can be absorbed into the first
gates in step one. Table 1 summarizes the number of native gates
needed per step for initial state. To recover the evolution of the
Dirac equation in a DQW after five steps, 81 single qubit gates
and 32 XX-gates are required.

After evolving a number of steps, we sample the corresponding
probability distribution 3000 times and correct the results for
readout errors. For the DQW evolution up to five steps shown in
Fig. 3, a balanced coin (θ1= θ2= π/4) is used where the initial
position is x ¼ 0j i for different initial particle states, 0j ic in
Fig. 3b i, 1j ic in Fig. 3b ii, and an equal superposition of both in
Fig. 3b iii. In Fig. 3b iv, b v, and b vi we show the ideal output
from classical simulation of the circuit for comparison (see
Methods for a plot of the difference). With a balanced coin the
particle evolves in equal superposition to the left and right
position at each time step and upon measurement, there is a 50/
50 probability of finding the particle to the left or right of its
previous position, just as in classical walk. If we let the DQW
evolve for more than three steps before we perform a position
measurement, we will find a very different probability distribution
compared to the classical random walk52.

The same experimental setup can be used to recover a DCA
with a two-period DQW. Here we set θ1= 0 and varied θ2 to
recover the Dirac equation for different mass values. In Fig. 3c, we
show experimental results for θ2= π/4, π/10 and π/20, corre-
sponding to a mass 1.1357, 0.3305, and 0.159 in units of ℏc−2s−1,
with the initial particle state in the superposition 0j ic þ i 1j ic. The
main signature of a DCA for small mass values is the presence of
peaks moving outward and a flat distribution in the middle as
shown for the cases with small values of θ2, Figs. 3c ii-iii. This
bimodal probability distribution in position space is an indication
of the one-dimensional analog of an initially localized Dirac
particle, with positive energy, evolving in time which spreads in
all directions in position space at speeds close to the speed of
light53. In contrast, a DCA with θ2= π/4, Fig. 3c i corresponds to
a massive particle and hence there is a slow spread rather than a
ballistic trajectory in position space.
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Fig. 2 Mapping of multi-qubit states to position states. Multi-qubit
states are re-ordered in such a way that the state 0j i ð 1j iÞ of the last qubit
corresponds to even (odd) position numbers and its correspondence in the
position space.
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Discussion
We have shown how quantum walks form the basic elements for
simulation of the dynamics associated with the free Dirac particle
with positive energy. Despite the population mismatch of
0.05–0.2 between the simulation and the experimental results
after five steps, the final probability density exhibits the char-
acteristic behavior of an initially localized Dirac particle. A key
factor on the digitization of DQW/DCA is the mapping of qubit
states to position space. An adequate mapping is important to
minimize the number of gates on the protocol, and as a con-
sequence, the resource scaling of the evolution. By increasing in
the available number of qubits, these quantum circuits can be
scaled to implement more steps and simulate a multi-particle
DQW. The number of gates has a polynomial growth rate with
the number of steps54. The correspondence between DQWs and
the dynamics of Dirac particles suggests that the QWs formalism
is as a viable approach to reproduce a variety of phenomena
underpinned by Dirac particle dynamics in both the high- and
low-energy regime22,39,43. Quantum simulations of free quantum
field theory43, Yang-Mills gauge-field on fermionic matter55, as
well as the effect of mass and space-time curvature on

entanglement between accelerated particles20,56,57 have been
reported and probing quantum field theory from the algorithmic
perspective in an active field of research. However, the circuit
complexity for position-dependent coin operations needed for
simulating these effects will increase with the complexity of the
evolution, which means further improvements in quantum
hardware will be necessary for their realization.

Methods
Experimental details. The experiments are performed in a chain of seven indi-
vidual 171Yb+ ions confined in a Paul trap and laser-cooled close to their motional
ground state45,51. In order to guarantee higher uniformity in the ion spacing,
matching the equally spaced individual addressing beams, the middle five of these
are used to encode qubits in their hyperfine-split 2S1/2 ground level, with an energy
difference of 12.642821 GHz. The two edge ions are neither manipulated nor
measured, however, their contribution to the collective motion is included when
creating the entangling operations. The ions are initialized by an optical pumping
scheme and are collectively read out using state-dependent fluorescence detec-
tion58, with each ion being mapped to a distinct photo-multiplier tube (PMT)
channel. The system has two mechanisms for quantum control, which can be
combined to implement any desired operation: single-qubit rotations, or R gates,
and two-qubit entangling interactions, or XX gates. These quantum operations are
achieved by applying two counter-propagating optical Raman beams from a single
355-nm mode-locked laser59. The first Raman beam is a global beam applied to the
entire chain, while the second is split into individual addressing beams, each of
which can be controlled independently and targets one qubit. Single-qubit gates are
generated by driving resonant Rabi rotations of defined phase, amplitude, and
duration. Two-qubit gates are realized by illuminating two ions with beat-note
frequencies near to the motional sidebands and creating an effective spin-spin
(Ising) interaction via transient entanglement between the state of two ions and all
modes of motion60–62. The average state detection fidelity for single- and two-qubit
gate are 99.5(2)% and 98–99%, respectively. Rotations around the z-axis are
achieved by phase advances on the classical control signals. Both the R as well as
the XX angle can be varied continuously. State preparation and measurement
(SPAM) errors are characterized and corrected by applying the inverse of an
independently measured state-to-state error matrix63.

Errors. In order to illustrate how our experiment performs, we plot the absolute
value of the difference between measured and simulated position distributions,
Fig. 4, they match the theoretical expectation closely. These distributions are
obtained after tracing out the coin information of the unitary evolution Ŵ ¼ ŜĈθ
for each time-step. In both instances, DQW and DCA, the number of gates and
hence the error incurred grows with the number of steps.
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Fig. 3 Circuit implementation of quantum walks on a trapped-ion processor and its time evolution. a Circuit diagram for a DQW and DCA. Each dashed
block describes one step in the quantum walk. b Discrete-time QuantumWalk. Comparison of the experimental results (left) and the theoretical quantum-
walk probability distribution (right) for the first five steps with initial particle state b i and b iv ψj ic ¼ 0j ic, b ii and b iv ψj ic ¼ 1j ic, b iii and b vi
ψj ic ¼ 0j ic þ i 1j ic, and position state x ¼ 0j i. c Output of a step-5 Dirac Cellular Automaton for θ1= 0 and, c i and c iv θ2= π/4, c ii and c v θ2= π/10 and
c iii and c vi θ2= π/20 with the initial state Ψinj i ¼ ð 0j ic þ i 1j icÞ � x ¼ 0j i.

Table 1 Gate counting.

DQW DCA

0j ic= 1j ic 0j ic þ i 1j ic 0j ic þ i 1j ic
Step R XX R XX R XX
1 5 2 6 2 5 2
2 10 4 10 4 12 4
3 12 4 12 4 11 4
4 25 11 25 11 27 11
5 26 11 26 11 26 11
Total: 78 32 79 32 81 32

Number of single- and two-qubit gates per step and total number of gates after a 5-step
evolution.
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Apart from this, the output from the walk both, DQW and DCA, is designed to
have zero probabilities for an alternate position, however, due to addressing
crosstalk in the system, we see a small amount of population in these states. The
same mechanism can populate the state 1000j i of the logical encoding not included
in our mapping. In fact, the average experimental population registered in this state
is <2% for the deepest circuits and hence does not affect the results significantly.

Comparison between Dirac kinematics and DCA. We use the explicit time-
dependent solution of the one-dimensional Dirac equation provided by Strauch18:

Ψðx; tÞ ¼ mN
π

s�1K1ðmsÞ aþ iðt þ xÞ½ � þ K0ðmsÞ
s�1K1ðmsÞ aþ iðt � xÞ½ � þ K0ðmsÞ

� �
; ð9Þ

where s ¼ ½x2ðaþ itÞ2�1=2, N ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðπ=2mÞp ½K1ð2maÞ þ K0ð2maÞ��1=2 the nor-
malized factor and Kn is the modified Bessel Function of order n, to show the
corresponding probability density at time t to the DCA after the time-step t, Fig. 5.
The relationship between the mass in the Dirac equation and the coin bias
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parameter is given by,

m � θ2

1� θ22
2

: ð10Þ

Gate block. The compiler breaks down the gate blocks shown in Fig. 3 (Toffoli-
CNOT and Toffoli - Toffoli 4 - CNOT) into native R and XX gates as given by the
following circuits, which are optimal in the XX-gate count, Fig. 6. Sketch of the XX-
gate is meant to symbolize the two-qubit entangling gate between the outer ions
inside a square.

Data availability
The data that support the findings of this study are available from the corresponding
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