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Abstract
The evolution of a many-particle system on a one-dimensional lattice, subjected
to a quantum walk can cause spatial entanglement in the lattice position,
which can be exploited for quantum information/communication purposes.
We demonstrate the evolution of spatial entanglement and its dependence on
the quantum coin operation parameters, the number of particles present in the
lattice and the number of steps of the quantum walk on the system. Thus,
spatial entanglement can be controlled and optimized using a many-particle
discrete-time quantum walk.

PACS numbers: 03.67.Bg, 03.67.Ac

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Entanglement in a quantum state has been the fundamental resource in many quantum
information and computation protocols, such as cryptography, communication, teleportation
and algorithms [1, 2]. To implement these protocols, generating an entangled state is very
important. Similarly, studies on the interface between condensed matter systems and quantum
information have shown entanglement as a signature of quantum phase transition [3–5]. To
understand the phases and dynamics in many-body systems an analysis of entanglement in
many-body systems is very important. Hence, various schemes have been proposed for
entanglement generation in quantum systems [6–9] and for understanding entanglement in
many-body systems [10]. Quantum walk (QW) is one such process in which an uncorrelated
state can evolve to an entangled state and be used to analyze the evolution of entanglement
[11, 12].

The QW, which was developed as a quantum analog of the classical random walk (CRW),
evolves a particle into an entanglement between its internal and position degrees of freedom.
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It has played a significant role in the development of quantum algorithms [13]. Furthermore,
the QW has been used to demonstrate coherent quantum control over atoms, quantum phase
transition [14], to explain the phenomena such as breakdown of an electric field-driven system
[15] and direct experimental evidence for wavelike energy transfer within photosynthetic
systems [16, 17]. Experimental implementation of the QW has also been reported [18–21],
and various other schemes have been proposed for its physical realization [22–26]. Therefore,
studying entanglement during the QW process will be useful from a quantum information
theory perspective and also contribute to further investigation of the practical applications of
the QW. In this direction, evolution of entanglement between single particle and position with
time (number of steps of the discrete-time QW) has been reported [12].

In this paper, we consider a multipartite quantum walk on a one-dimensional lattice and
study the evolution of spatial entanglement, entanglement between different lattice points. All
the particles considered in the system are identical and indistinguishable with two internal states
(sides of the quantum coin). Spatial entanglement generated using a QW can be controlled
by tuning different parameters, such as parameters in the quantum coin operation, number of
particles in the system and evolution time (number of steps). To quantify entanglement in the
system we are using Meyer–Wallach multipartite entanglement measure.

In section 2, we describe single-particle and many-particle discrete-time QWs. In
section 3, entanglement between a particle and position space and spatial entanglement using
single- and many-particle QWs are discussed. In section 4, we present the measure for spatial
entanglement of the system using the Meyer–Wallach global entanglement measure scheme
for particles in a one-dimensional lattice and in a closed chain (n-cycle). We also demonstrate
control over spatial entanglement by exploiting the dynamical properties of the QW. We
conclude with the summary in section 5.

2. Quantum walk

CRW describes the dynamics of a particle in position space with a certain probability. The
QW is the quantum analog of CRW-developed exploiting features of quantum mechanics
such as superposition and interference of quantum amplitudes [27–29]. The QW, which
involves superposition of states, moves simultaneously exploring multiple possible paths with
the amplitudes corresponding to the different paths interfering. This makes the variance of the
QW on a line to grow quadratically with the number of steps which is in sharp contrast to the
linear growth for the CRW.

The study of QWs has been largely divided into two standard variants: a discrete-time
QW (DTQW) [29–31] and a continuous-time QW (CTQW) [32]. In the CTQW, the walk is
defined directly on the position Hilbert space Hp, whereas for the DTQW it is necessary to
introduce an additional coin Hilbert space Hc, a quantum coin operation to define the direction
in which the particle amplitude has to evolve. The connection between these two variants and
the generic version of the QW has been studied [33, 34]. However, the coin degree of freedom
in the DTQW is an advantage over the CTQW as it allows control of dynamics of the QW
[35, 36]. Therefore, we take full advantage of the coin degree of freedom in this work and
study the DTQW on a many-particle system.

2.1. Single-particle quantum walk

The DTQW is defined on the Hilbert space H = Hc ⊗Hp. In one dimension, the coin Hilbert
space Hc, spanned by the basis states |0〉 and |1〉, represents two sides of the quantum coin,
and the position Hilbert space Hp, spanned by the basis states |ψj 〉, j ∈ Z, represent the
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positions in the lattice. To implement the DTQW, we will consider a three-parameter U(2)
operator Cξ,θ,ζ of the form

Cξ,θ,ζ ≡
(

eiξ cos(θ) eiζ sin(θ)

e−iζ sin(θ) −e−iξ cos(θ)

)
(1)

as the quantum coin operation [36]. The quantum coin operation is applied on the particle
state (Cξ,θ,ζ ⊗ 11) when the initial state of the complete system is

|�in〉 = [cos(δ)|0〉 + eiη sin(δ)|1〉] ⊗ |ψ0〉. (2)

The state cos(δ)|0〉 + eiη sin(δ)|1〉 is the state of the particle and |ψ0〉 is the state of the position
at the lattice position j = 0.

The quantum coin operation on the particle is followed by the conditional unitary shift
operation S which acts on the complete Hilbert space of the system:

S = exp(−iσz ⊗ P l), (3)

where P is the momentum operator, σz is the Pauli spin operator in the z direction and l is the
length of each step. The eigenstates of σz are denoted by |0〉 and |1〉. Therefore, S, which
delocalizes the wave packet over the positions (j − 1) and (j + 1), can also be written as

S = |0〉〈0| ⊗
∑
j∈Z

|ψj−1〉〈ψj | + |1〉〈1| ⊗
∑
j∈Z

|ψj+1〉〈ψj |. (4)

The process of

Wξ,θ,ζ = S(Cξ,θ,ζ ⊗ 11) (5)

is iterated without resorting to intermediate measurement to help realize a large number of
steps of the QW. The parameters δ and η in equation (2) can be varied to obtain different initial
states of the particle. The three parameters ξ , θ and ζ of Cξ,θ,ζ can be varied to choose the
quantum coin operation. By varying parameter θ the variance can be increased or decreased
according to the functional form, σ 2 ≈ (1 − sin(θ))t2, where t is the number of steps of the
QW, as shown in figure 1.

Biased coin operation and biased QW. The most widely studied form of the DTQW is the
walk using the Hadamard operation

H = 1√
2

(
1 1
1 −1

)
, (6)

corresponding to the quantum coin operation with ξ = ζ = 0 and θ = π/4 in equation (1).
The Hadamard operation is an unbiased coin operation, and the resulting walk is known as the
Hadamard walk. This walk implemented on a particle initially in a symmetric superposition
state,

|�ins〉 = 1√
2
[|0〉 + i|1〉] ⊗ |ψ0〉, (7)

obtained by choosing δ = π/4 and η = π/2 in equation (2), returns a symmetric, unbiased
probability distribution of the particle in position space. However, the Hadamard walk on any
asymmetric initial state of the particle results in an asymmetric, biased probability distribution
of the particle in position space [31]. We should note that the role of the initial state on
the symmetry of the probability distribution is not vital for a QW using the three-parameter
operator given by equation (1) as a quantum coin operation.
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Figure 1. Spread of the probability distribution for different values of θ using the quantum
coin operator C0,θ,0. The distribution is wider for (a) (0, θ, 0) = (0, π

12 , 0) than for

(b) (0, θ, 0) = (0, π
4 , 0) and (c) (0, θ, 0) = (0, 5π

12 , 0), showing the decrease in spread with
increase in θ . The initial state of the particle is |�ins〉 = 1√

2
(|0〉 + i|1〉)⊗|ψ0〉 and the distribution

is for 100 steps.

To elaborate this further, we will consider the first-step evolution of the DTQW using
a three-parameter quantum coin operation given by equation (1) on a particle initially in the
symmetric superposition state. After the first step of the DTQW the state can be written as

Wξ,θ,ζ |�ins〉 = 1√
2
[(eiξ cos(θ) + i eiζ sin(θ))|0〉|ψ−1〉 + (e−iζ sin(θ) − i e−iξ cos(θ))|1〉|ψ+1〉].

(8)

If ξ = ζ , equation (8) has left–right symmetry in the position probability distribution, but
not otherwise. That is, the parameters ξ and ζ introduce asymmetry in the position space
probability distribution. Therefore, a coin operation with ξ 	= ζ in equation (1) can be called
as a biased quantum coin operation which will bias the QW probability distribution of the
particle initially in a symmetric superposition state (figure 2) [36]. However, we should note
that irrespective of the quantum coin operation used, QW can also be biased by choosing an
asymmetric initial state of the particle (for example, the Hadamard walk of a particle initially
in the state |0〉 or the state |1〉).

2.2. Many-particle quantum walk

To define a many-particle QW in one dimension, we will consider an M-particle system with
one non-interacting particle at each position (figure 3). The M identical particles in M lattice
points with each particle having its own coin and position Hilbert space will have a total
Hilbert space H = (Hc ⊗ Hp)M . We assume the particles to be distinguishable.

The evolution of each step of the QW on the M-particle system is given by the application
of the operator W⊗M

0,θ,0. The initial state that we will consider for the many-particle system in
one dimension will be

∣∣�M
ins

〉 =
j= M−1

2⊗
j=− M−1

2

( |0〉 + i|1〉√
2

)
⊗ |ψj 〉. (9)
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Figure 2. Spread of probability distribution for different values of ξ , θ , ζ using the quantum coin
operator Cξ,θ,ζ . The parameter ξ shifts the distribution to the left: (a) (ξ, θ, ζ ) = ( π

6 , π
6 , 0) and

(c) (ξ, θ, ζ ) = ( 5π
12 , π

3 , 0). The parameter ζ shifts it to the right: (b) (ξ, θ, ζ ) = (0, π
6 , π

6 ) and

(d) (ξ, θ, ζ ) = (0, π
3 , 5π

12 ). The initial state of the particle |�ins〉 = 1√
2
(|0〉 + i|1〉) ⊗ |ψ0〉 and the

distribution is for 100 steps.

M particles and 2t+M+1 lattice positions

|0> shifts to left
|1> shifts to right 

Figure 3. Many-particle state with one non-interacting particle at each position space.

For an M-particle system after t steps of the QW, the Hilbert space consists of the tensor
product of single-lattice position Hilbert space which is (2t + M + 1) in number. That is,
after t steps of the QW, the M particles are spread between (j − t) and (j + t). In principle,
each lattice point is associated with a Hilbert space spanned by two subspaces, a zero-particle
subspace and one-particle subspace spanned by two possible states of the coin, |0〉 and |1〉.
Therefore, the dimension of each lattice point will be 3M and the dimension of total Hilbert
space is (3M)⊗M . Figure 4 shows the probability distribution of the many-particle system with
an increase in number of steps of the QW.

3. Entanglement

To efficiently make use of entanglement as a physical resource, the amount of entanglement
in a given system has to be quantified. Therefore, entanglement in a pure bipartite system or
a system with two Hilbert spaces is quantified using standard measures known as entropy of
entanglement or Schmidt number [1]. The entropy of entanglement corresponds to the von
Neumann entropy, a functional of the eigenvalues of the reduced density matrix, and a Schmidt
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Figure 4. Probability distribution of 40 particles initially with one particle in each position space
when subjected to the QW of different number of steps. The initial state of all the particles is

1√
2
(|0〉 + i|1〉) and is evolved in position space using the Hadamard operator, C0,π/4,0, as the

quantum coin. The distribution spreads in the position space with an increase in number of steps.

number is the number of non-zero Schmidt coefficients in its Schmidt decomposition. For a
multipartite state, there are quite a few good entanglement measures that have been proposed
[37–43]. However, as the number of particles in the system increases, the complexity of finding
an appropriate entanglement measure also increases, making scalability impractical. Among
the proposed measures, to address this scalability problem, Mayer and Wallach proposed
a scalable global entanglement measure (polynomial measure) to quantify entanglement in
many-particle systems [40].

In this section, we will first discuss the entanglement of a particle with position space
quantified using entropy of entanglement. Later we will discuss spatial entanglement
quantified using the Mayer–Wallach (M–W) measure. Spatial entanglement has been explored
earlier using different methods. For example, in an ideal bosonic gas it has been studied using
off-diagonal long-range order [44]. For our investigations, we consider a distinguishable many-
particle system, implement QW and use the M–W measure to quantify spatial entanglement.
In this system the dynamics of particles can be controlled by varying the quantum coin
parameters, the initial state of the particles, the number of particles in the system and the
number of steps of the QW. In particular, we choose the particles in one-dimensional open
and closed chains. The spatial entanglement thus created can be used for example to create
entanglement between distant atoms in an optical lattice [45] or as a channel for state transfer
in spin chain systems [46–48].

3.1. Single-particle–position entanglement

QW entangles the particle (coin) and the position degrees of freedom. To quantify it, let us
consider a DTQW on a particle initially in a state given by equation (7) with a simple form of
a coin operation

C0,θ,0 ≡
(

cos(θ) sin(θ)

sin(θ) − cos(θ)

)
. (10)
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Figure 5. Entanglement of a single particle with position space when subjected to the QW. The
initial state of a particle is 1√

2
(|0〉 + i|1〉) and is evolved in position space using different values for

θ in the quantum coin operation C0,θ,0. The entanglement initially oscillates and approaches an
asymptotic value with an increase in the number of steps. For smaller values of θ the entanglement
is higher and decreases with an increase in θ . Initial oscillation is also larger for higher θ .

After the first step, W0,θ,0 = S(C0,θ,0 ⊗ 11), the state takes the form

|�1〉 = W0,θ,0|�ins〉 = γ (|0〉 ⊗ |ψj−1〉) + δ(|1〉 ⊗ |ψj+1〉) (11)

where γ = ( cos(θ)+i sin(θ)√
2

)
and δ = ( sin(θ)−i cos(θ)√

2

)
. The Schmidt rank of |�1〉 is 2 which implies

entanglement in the system. The value of entanglement with an increase in the number of
steps can be further quantified by computing the von Neumann entropy of the reduced density
matrix of the position subspace.

Figure 5 shows a plot of the entanglement against the number of steps of the QW on a
particle initially in a symmetric superposition state using different values for θ in the operation
Wθ . The von Neumann entropy of the reduced density matrix of the coin is used to quantify
entanglement between the coin and the position in figure 5. That is,

Ec(t) = −
∑

j

λj log2(λj) (12)

where λj are eigenvalues of the reduced density matrix of the coin after t steps (time). The
entanglement initially oscillates and reaches an asymptotic value with increasing number of
steps. In the asymptotic limit, the entanglement value decreases with an increase in θ and
this dependence can be attributed to the spread of the amplitude distribution in position
space. That is, with an increase in θ , constructive interference of quantum amplitudes
toward the origin becomes prominent narrowing the distribution in the position space. In
figure 6, the process is repeated for a particle initially in an asymmetric superposition state
|�in〉 = [

cos
(

2π
9

)|0〉 + ei π
6 sin

(
2π
9

)|1〉] ⊗ |ψ0〉. Comparing figure 6 with figure 5, we note the
increase in entanglement and decrease in the oscillation. This observation can be explained
by returning to our earlier note on biased QW in section 2.1. In figure 2 we note that biasing
of the coin operation leads to an asymmetry in the probability distribution, with an increase
in peak height on one side and a decrease on the other side (increase and decrease are in
reference to the symmetric distribution). A similar biasing effect can also be reproduced by

7
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Figure 6. Entanglement of a single particle with position space when subjected to the QW. The
initial state of the particle is given by equation (2) with δ = 2π

9 and η = π
6 and is evolved in

position space using different values for θ in the quantum coin operation C0,θ,0. The entanglement
initially oscillates and approaches an asymptotic value with an increase in the number of steps.
For smaller values of θ the entanglement is higher and decreases with an increase in θ . Initial
oscillation is also larger for higher θ .

choosing an asymmetric initial state of the particle. The biased distribution with an increased
value of probability at one side in the distribution contributes to a reduced oscillation in the
distribution. This in turn results in the increase of the von Neumann entropy: entanglement.

3.2. Spatial entanglement

Spatial entanglement is the entanglement between the lattice points. This entanglement takes
the form of non-local particle number correlations between spatial modes. To observe spatial
entanglement we first need to associate the lattice with the state of a particle. Then we need
to consider the evolution of a single-particle QW followed by the evolution of a many-particle
QW, in order to understand spatial entanglement.

3.2.1. Using a single-particle quantum walk. In a single-particle QW, each lattice point
is associated with a Hilbert space spanned by two subspaces. The first is the zero-particle
subspace which does not involve any coin (particle) states. The other is the one-particle
subspace spanned by the two possible states of the coin, |0〉 and |1〉. To obtain the spatial
entanglement we will write the state of the particle in the form of the state of a lattice.
Following from equation (11), the state of the particles after first two steps of QW takes the
form

|�2〉 = W0,θ,0|�1〉 = γ [cos(θ)|0〉|ψj−2〉 + sin(θ)|1〉|ψj 〉]
+ δ[sin(θ)|0〉|ψj 〉 − cos(θ)|1〉|ψj+2〉]. (13)

In order to obtain the state of the lattice we can redefine the position state in the following
way: the occupied position state |ψj 〉 as |1j 〉, which means that the j th position is occupied

8
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and the rest of the lattice is empty. Therefore, we can rewrite (13) as

|�2〉 = γ [cos(θ)|0〉|1j−2〉 + sin(θ)|1〉|1j 〉] + δ[sin(θ)|0〉|1j 〉 − cos(θ)|1〉|1j+2〉]. (14)

Since we are interested in the spatial entanglement, we project this state into one of the coin
state so that we can ignore the entanglement between the coin and the position state and
consider only the lattice states. Here we will choose the coin state to be |0〉 and take projection
to obtain the state of the lattice in the form

|�lat〉 = |0〉(γ cos(θ)|1j−2〉 + δ sin(θ)|1j 〉). (15)

Each lattice site j can be considered as a Hilbert space with basis states |1j 〉 (occupied state)
and |0j 〉 (unoccupied state). Then, the above equation in the extended Hilbert space of each
lattice can be rewritten in terms of occupied and unoccupied lattice states as

|� ′
lat〉 = γ cos(θ)|1j−2 0j 〉 + δ sin(θ)|0j−2 1j 〉. (16)

We can see that after first two steps of the QW the lattice points j and (j − 2) are entangled.
One can check that the lattice points j and (j +2) are entangled if we choose the coin state to be
|1〉. With an increase in the number of steps, the state of the particle spreads in position space
and the projection over one of the coin state reduces that state to a pure state, for which one
may compute spatial entanglement, according to the above prescription. Therefore, with an
increase in the number of steps, the spatial entanglement from a single-particle QW decreases.

3.2.2. Using many-particle quantum walk. We will extend the study of evolution of spatial
entanglement as the QW progresses on a many-particle system.

Let us first consider the analysis of first two steps of the Hadamard walk (θ = π/4 in
equation (10)) on a three-particle system with the initial state:

∣∣�3p
ins

〉 =
+1⊗

j=−1

( |0〉 + i|1〉√
2

)
⊗ |ψj 〉. (17)

We will label the three particles at positions −1, 0 and 1 as A, B and C, respectively. Since
evolution of these particles is independent, we write down the state after the first step as a
tensor product of each of the three particles:∣∣�3p

1

〉 = W⊗3
0,θ,0

∣∣�3p
ins

〉 = [γ |0〉| − 2〉 + δ|1〉|0〉]A ⊗ [γ |0〉| − 1〉 + δ|1〉| + 1〉]B

⊗ [γ |0〉|0〉 + δ|1〉| + 2〉]C , (18)

where γ = (1 + i)/2 and δ = (1 − i)/2. After two steps the tensor product of each of the three
particles is given by∣∣�3p

2

〉 =
[
γ

( |0〉| − 3〉 + |1〉| − 1〉√
2

)
+ δ

( |0〉| − 1〉 − |1〉| + 1〉√
2

)]
A

⊗
[
γ

( |0〉| − 2〉 + |1〉|0〉√
2

)
+ δ

( |0〉|0〉 − |1〉| + 2〉√
2

)]
B

⊗
[
γ

( |0〉| − 1〉 + |1〉| + 1〉√
2

)
+ δ

( |0〉| + 1〉 − |1〉| + 3〉√
2

)]
C

. (19)

By projecting this state into one of the coin states (we choose state |0〉 ⊗ |0〉 ⊗ |0〉) we can
obtain a state of the lattice for which spatial entanglement may be computed. Then the state
of the lattice after projection and normalization is

|�lat〉 = γ 3|A〉−3|B〉−2|C〉−1 + γ 2δ (|A〉−3|B〉−2|C〉1 + |A〉−3|B〉0|C〉−1 + |AC〉−1|B〉−2)

+ γ δ2 (|A〉−3|B〉0|C〉1 + |AC〉−1|B〉0 + |A〉−1|B〉−2|C〉1) + δ3|A〉−1|B〉0|C〉1, (20)

9
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where A,B and C represent the particle labels and the subscripts represent the position labels.
In a similar manner we can obtain |�lat〉 for a system with a large number of particles. Then
the next task is to calculate the spatial entanglement.

4. Calculating spatial entanglement in a multipartite system

In a system with two particles, the state is separable if we can write it as a tensor product of
individual particle states, and entangled if not. For a system with M > 2 particles, a state is
said to be fully separable if it can be written as

|ψ〉 = |φ1〉 ⊗ |φ2〉 ⊗ · · · ⊗ |φk〉, (21)

when k = M . |φi〉 will then denote the state of the ith particle. When k < M a state is said to
be partially entangled and when k = 1 the state will be fully entangled.

Rather than using the von Neumann entropy to quantify multipartite entanglement of a
given state ρ, one sometimes often prefers to consider purity, which corresponds (up to a
constant) to linear entropy, that is the first-order term in the expansion of the von Neumann
entropy around its maxima, given by

E = d

d − 1
[1 − Tr ρ2] (22)

for a d-dimensional particle Hilbert space [49]. To quantify the entanglement of multipartite
pure states, one measure commonly used is the M–W measure [40]. It is the entanglement
measure of a single particle to the rest of the system, averaged over the whole of the system
and is given by

EMW = d

d − 1

[
1 − 1

L

L∑
i=1

Tr ρ2
i

]
(23)

where L is the system size and ρi is the reduced density matrix of the ith subsystem. The
M–W measure does not diverge with increasing system size and is relatively easy to calculate.

In a multipartite QW the dimension at each lattice point, after projection over one particular
state of the coin, is 2M where M is the number of particles. Hence, the expression for
entanglement will be

EMW(|ψlat〉) = 2M

2M − 1

⎛
⎝1 − 1

2t + M + 1

t+ M
2∑

j=−(t+ M
2 )

tr ρ2
j

⎞
⎠ (24)

where t is the number of steps and ρj is the reduced density matrix of the j th lattice point.
The reduced density matrix ρj can be written as

ρj =
∑

k

p
j

k |k〉〈k| (25)

where |k〉 is one of the 2M possible states available for a lattice point and p
j

k can be calculated
once we have the probability distribution of an individual particle on the lattice.

Since we have M distinguishable particles, we have 2M configurations depending upon
whether a given particle is present in the lattice point or not after freezing the state of the
particle. This set of configurations forms the basis for a single-lattice point Hilbert space.
Now we can calculate p

j

k , the probability of the kth configuration of a particle in the j th lattice
point as follows. Let us say a

(li )
j is the probability of the ith particle to be or not to be in the

j th lattice point depending on li. If li is 1, then it gives us the probability of the particle to be

10
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Figure 7. Evolution of spatial entanglement with an increase in the number of steps of the QW
for different number of particles in an open one-dimensional lattice chain. The entanglement first
increases and with further increase in the number of steps, the number of lattice positions exceeds
the number of particles in the system resulting in the decrease of the spatial entanglement. The
distribution is obtained by implementing the QW on particles in the initial state 1√

2
(|0〉 + i|1〉) and

the Hadamard operation C0,π/4,0 as a quantum coin operation.

in the lattice point. If li is 0, then a
(li )
j is the probability of a particle not to be in the lattice

point, that is, a
(0)
j = 1 − a

(1)
j . Hence, we can write

p
j

k =
∏

i

a
li
j . (26)

Once we have the probability of each particle at a given lattice position, the spatial entanglement
can be conveniently calculated. Since the QW is a controlled evolution, one can obtain a
probability distribution of each particle over all lattice positions. In fact, one can easily control
the probability distribution by varying quantum coin parameters during the QW process and
hence the entanglement.

Figure 7 shows the phase diagram of the spatial entanglement using a many-particle QW.
Data for the phase diagram were obtained numerically by subjecting the many-particle system
with different number of particles to the QW with increasing number of steps. The quantity
of spatial entanglement was computed using equation (4).

Here, we have chosen the Hadamard operation C0,π/4,0 and 1√
2
(|0〉 + i|1〉) as the quantum

coin operation and initial state of the particles, respectively, for the evolution of the many-
particle QW. To see the variation of entanglement for a fixed number of particles with an
increase in steps, we can pick a line parallel to the y axis. That is, fix the number of particles
and see the variation of entanglement with the number of steps.

In figure 7, we see that for a fixed number of particles, the entanglement at first increases
to some value before gradually falling. For M = 12, we can note that the peak value is about
0.5 before gradually falling. With an increase in the number of steps of the QW, the number of
lattice positions to which the particles evolve increases resulting in the decrease of the spatial
entanglement (see equation (4)). The decrease in entanglement before the number of steps is
equal to the number of particles should be noted. This is because for the Hadamard walk the
spread of a probability distribution after t steps is between −t√

2
and t√

2
[36].
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Figure 8. Quantity of spatial entanglement for 10 particles after 10 steps and 20 particles after
20 steps of the QW on a one-dimensional lattice using different values of θ in the quantum
coin operation C0,θ,0. For (a) and (b), the distribution is for particles initially in the symmetric
superposition state, 1√

2
(|0〉 + i|1〉), and for (c) the particle’s initial state is |0〉 (will be the same

for the state |1〉). Quantity of entanglement is higher for θ closer to 0 and π/2 compared to the
intermediate value. We note that the asymmetric probability distribution due to an asymmetric
initial state in the case of (c) contributes for an increase in the quantity of spatial entanglement.
When θ = π/2, for every even number of steps of the QW, the system returns to the initial state
where entanglement is 0. Entanglement is 0 for θ = 0.

If we fix the number of steps and measure the entanglement by increasing the number of
particles in the system, the quantity of spatial entanglement first decreases and then it starts
increasing with an increase in the number of particles.

To show the variation of spatial entanglement with the quantum coin parameter θ , we
plot the spatial entanglement by varying the parameter θ for a system with 10 particles after
10 steps of the QW and for a system with 20 particles after 20 steps of the QW in figure 8.
In this figure, (a) and (b) are plots that use the symmetric superposition state 1√

2
(|0〉 + i|1〉)

(unbiased QW) as an initial state of all the particles, and (c) is the plot with all the particles
in one of the basis states |0〉 or |1〉 (biased QW) as the initial state. We note that the quantity
of entanglement is higher for θ values closer to 0 and π/2 and dips for values in between
for all the three cases. Biasing the QW, plot (c) shows a slight increase in the quantity of
entanglement compared to the unbiased case, plot (b). A similar effect is seen by biasing the
QW using two parameters ξ, ζ in the coin operation Cξ,θ,ζ on particles initially in a symmetric
superposition state.

Closed chain. Since most physical systems considered for implementation will be of a definite
dimension, we extend our calculations to one of the simplest examples of closed geometry, an
n-cycle. For a QW on an n-cycle, the shift operation, equation (4), takes the form

S = |0〉〈0| ⊗
n−1∑
j=0

|ψj−1 mod n〉〈ψj | + |1〉〈1| ⊗
n−1∑
j=0

|ψj+1 mod n〉〈ψj |. (27)

When we consider a many-particle system in a closed chain, with the number of lattice
positions equal to the number of particles M, the QW process does not expand the position
Hilbert space like it does on an open chain (line). Therefore, the spatial entanglement does
not decrease at later times as it does for a walk on an open chain, but remains close to the

12
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Figure 9. Evolution of spatial entanglement for a system with different number of particles in a
closed chain. With an increase in the number of steps, the entanglement value remains close to an
asymptotic value with some peaks in between. The peaks can be accounted for the crossover of
leftward and rightward propagating amplitudes of the internal state of the particle during the QW.
The peaks are more for a chain with a smaller number of particles. An increase in the number
of particles in the system results in the decrease of the entanglement value. The distribution is
obtained by using 1√

2
(|0〉 + i|1〉) as the initial states of all particles and the Hadamard operation

C0,π/4,0 as quantum coin operation.
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Figure 10. Quantity of spatial entanglement for 20 particles on a closed chain after 20 steps of
the QW using different values of θ in the quantum coin operation C0,θ,0. The distribution is for
particles initially in the state 1√

2
(|0〉 + i|1〉). Since the system is a closed chain, the QW does not

expand the position Hilbert space, and therefore for all values of θ from 0 to π/2 the entanglement
value remains roughly uniform except for a small peak at smaller values of θ . For θ = 0 when
the number of steps is equal to the number of particles, the amplitudes goes round the chain and
returns to its initial state making the entanglement 0 and for θ = π/2, for every even number of
steps of the QW, the system returns to the initial state where entanglement is again 0.

asymptotic value. Figure 9 shows the evolution of entanglement for a system with different
number of particles in a closed chain. The peaks seen in the plot can be accounted for by
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the crossover of the leftward and rightward propagating amplitudes of the internal state of the
particle during the QW process. The frequency of the peaks is more for a smaller number of
particles (smaller closed chain). Also note that the increase in the number of particles and the
number of lattice points in the closed cycle results in the decrease in spatial entanglement of
the system.

In figure 10, the value of spatial entanglement for 20 particles on a closed chain after 20
steps of the QW using different values of θ in the quantum coin operation C0,θ,0 is presented.
For all values of θ from 0 to π/2 the entanglement value remains roughly uniform except for
the extreme values of θ . For θ = 0, the amplitude goes round the ring and returns to its initial
state making the spatial entanglement value = 0. For θ = π/2, for every even number of
steps of the QW, the system returns to the initial state where spatial entanglement is again 0.

Therefore, spatial entanglement on a large lattice space can be created, controlled and
optimized for a maximum entanglement value by varying the quantum coin parameters and
number of particles in the multi-particle QW.

5. Conclusion

We have presented the evolution of spatial entanglement in a many-particle system subjected
to a QW process. By considering many particle in the one-dimensional open and closed
chain we have shown that spatial entanglement can be generated and controlled by varying
the quantum coin parameters, the initial state and the number of steps in the dynamics of the
QW process. The spatial entanglement generated can have a potential application in quantum
information theory and other physical processes.
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