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Localization and limit laws of a three-state alternate quantum walk on a two-dimensional lattice
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A two-dimensional discrete-time quantum walk (DTQW) can be realized by alternating a two-state DTQW
in one spatial dimension followed by an evolution in the other dimension. This was shown to reproduce a
probability distribution for a certain configuration of a four-state DTQW on a two-dimensional lattice. In this
work we present a three-state alternate DTQW with a parametrized coin-flip operator and show that it can produce
localization that is also observed for a certain other configuration of the four-state DTQW and nonreproducible
using the two-state alternate DTQW. We will present two limit theorems for the three-state alternate DTQW.
One of the limit theorems describes a long-time limit of a return probability, and the other presents a convergence
in distribution for the position of the walker on a rescaled space by time. We find that the spatial entanglement
generated by the three-state alternate DTQW is higher than that by the four-state DTQW. Using all our results,
we outline the relevance of these walks in three-level physical systems.
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I. INTRODUCTION

Quantum walks have played an important role in the
area of quantum information and computation. Particularly,
quantum walks have been effectively used to propose quantum
algorithms [1] and as a tool to realize universal quantum
computation [2,3]. They still continue to garner interest in
simulating quantum dynamics in various physical systems
and manifest the interesting phenomenon observed in real
systems such as photosynthesis [4] and edge states [5].
Therefore, detailed studies of quantum walks and their long-
time behavior in various configurations will give a better
understanding of controllable evolutions, paving the way for
further simulating the quantum dynamics in various physically
relevant systems and for engineering the quantum dynamics
for the required specifications. Experimental implementation
of quantum walks in various physical systems, for example,
single atom in an optical lattice [6], two-photon optical fiber
networks [7], and interacting bosonic atoms in an optical
lattice [8], have demonstrated the accessibility of systems via
quantum walks.

A discrete-time quantum walk (DTQW) on a one-
dimensional position space is defined using a two-state system
which is referred to as a coin state. Its evolution is described
using a quantum coin operation acting on a coin space followed
by a position-shift operator to evolve the system coherently in
superposition among different locations on a position space.
The extension of the DTQW to a higher spatial dimension
was successfully demonstrated by expanding the dimension
of the coin space [9]. For a two-dimensional DTQW with a
four-state coin space, a long-time limit distribution (theorem)
was obtained by Watabe et al. [10]. The limit theorem for the
four-state DTQW was determined by a parametrized coin-flip
operator which contained a Grover coin, and its limit density
function was shown to feature a Dirac δ function highlighting a
localized component and a continuous function with a compact
support representing a diffusing component. The clear spread
of probability distribution of the four-state DTQW with time
indicating the absence of the Dirac δ function was realized
only for a particular composition of the initial state of the walk
and the coin-flip operation.

However, an extended coin space with control over the
internal states to implement the corresponding coin operations
is an extremely challenging task for physical implementation
of the DTQW in higher dimensions. Therefore, an alternate
scheme to implement a DTQW on a two-dimensional position
space using a two-state system was introduced [11,12]. The
two-state DTQW was first evolved in one spatial dimension
followed by an evolution in the other dimension, and this
process of the alternate evolution was repeated to implement
a large number of steps of the walk. This two-state alternate
DTQW was shown to manifest the wide spread probability
distribution for a specific configuration of a four-state DTQW
on a two-dimensional position space. The long-time limit dis-
tribution describing the asymptotic behavior of the two-state
alternate DTQW after a large number of steps has also been
reported [13]. The absence of Dirac δ functions in the limit
density function of the two-state alternate DTQW is helpful
in understanding the similarities with the limit distribution
function obtained for a particular configuration of the four-
state DTQW. Various properties of the two-state alternate
DTQW on an N -dimensional space was later reported [14,15].
The effect of noise on the two-state alternate DTQW and a
four-state Grover walk was also studied and the robustness of
the two-state walk over the four-state walk in the presence of
noise was shown [16]. None of these studies on the two-state
alternate walks reported the presence of a Dirac δ function in
the limit distribution as it was reported for some configurations
of the four-state DTQW. The absence of constant eigenvalues
in the Fourier picture of the two-state alternate DTQW has been
a reason for the nonlocalized evolutions. However, later the
existence of a time-dependent two-state alternate DTQW with
periodic coin operators, which are based on the products of
a Hadamard operator and phase-shift operators depending on
time, was shown to manifest localization [14]. This still leaves
open the question of an alternate DTQW configuration which
can manifest localization without any complex combination of
coin operations.

The first theoretical study of a three-state Grover walk on
a one-dimensional position space reported localization around
an initial position [17]. Since then, the three-state DTQW on
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the line with a parametrized coin operator and its dependency
on the initial state were examined theoretically and numeri-
cally [18–21]. Motivated by the past studies, we extend them to
a three-state alternate DTQW in two dimensions in this paper.
We show that the three-state alternate DTQW localizes around
the initial position. We make an approximate analysis for
probability amplitudes of the three-state DTQW. Particularly,
defining a return probability as just the probability of finding
the walker at the origin, we compute its long-time limit from
the approximate behavior of the walk. On the other hand, we
also focus on a rescaled space and give a convergence law for
the DTQW. The limit law shows a behavior of the walker on
the rescaled space at an infinite time and the density function
in that law consists of both a Dirac δ function which implies
the possibility of localization and a continuous function with
a compact support. We discuss localization from the point
of view of both the return probability on the nonrescaled
space and a convergence in distribution on the rescaled
space.

In the Sec. II we introduce the three-state alternate DTQW
on a two-dimensional square lattice, and two limit theorems
are given with their proofs in subsequent sections. One is a
long-time limit of the return probability (Sec. III) and the other
is a long-time convergence in distribution on the rescaled space
(Sec. IV). In Sec. V we present an entanglement generated be-
tween the coin and position space, and between the two spatial
dimensions for both forms, the three-state and the four-state
DTQW. We compare the observations and briefly discuss the
possibility of physical realization of the three-state DTQW in a

three-level atomic system. In Sec. VI, we summarize our
results and discuss future prospects.

II. DEFINITION OF A THREE-STATE ALTERNATE
QUANTUM WALK ON A SQUARE LATTICE

In this section, we define a three-state alternate DTQW
on a two-dimensional square lattice. The position of the
walker is expressed on two Hilbert spaces Hp and Hc.
The Hilbert space Hc is spanned by an orthogonal normal
basis {|x,y〉 : x,y ∈ Z}, where Z = {0,±1,±2, . . .}. Since the
Hilbert space represents the space in which the walker locates,
it is called the position Hilbert space. At each vertex on
the position Hilbert space Hp, the walker can be expressed
in superposition of three coin states. Therefore, the coin
Hilbert space Hc is spanned by an orthogonal normal basis
{|0〉 , |1〉 , |2〉}. To compute limit laws later, we take the
following orthonormal vectors:

|0〉 =
⎡
⎣1

0
0

⎤
⎦, |1〉 =

⎡
⎣0

1
0

⎤
⎦, |2〉 =

⎡
⎣0

0
1

⎤
⎦. (1)

The whole state |�t 〉 of the quantum walker at time t ∈
{0,1,2, . . .} is described on the tensor Hilbert space Hp ⊗ Hc.
The position of the walker is shifted by two position-shift
operators S1 and S2 after the superposition is operated by a
coin-flip operator C as follows:

|�t+1〉 = S2CS1C |�t 〉 , (2)

where

S1 =
∑

x,y∈Z
|x − 1,y〉 〈x,y| ⊗ |0〉 〈0| + |x,y〉 〈x,y| ⊗ |1〉 〈1| + |x + 1,y〉 〈x,y| ⊗ |2〉 〈2| , (3)

S2 =
∑

x,y∈Z
|x,y − 1〉 〈x,y| ⊗ |0〉 〈0| + |x,y〉 〈x,y| ⊗ |1〉 〈1| + |x,y + 1〉 〈x,y| ⊗ |2〉 〈2| , (4)

and

C =
∑

x,y∈Z
|x,y〉 〈x,y| ⊗

(
−1 + c

2
|0〉 〈0| + s√

2
|0〉 〈1| + 1 − c

2
|0〉 〈2| + s√

2
|1〉 〈0| + c |1〉 〈1|

+ s√
2

|1〉 〈2| + 1 − c

2
|2〉 〈0| + s√

2
|2〉 〈1| − 1 + c√

2
|2〉 〈2|

)

=
∑

x,y∈Z
|x,y〉 〈x,y| ⊗

⎡
⎢⎣

− 1+c
2

s√
2

1−c
2

s√
2

c s√
2

1−c
2

s√
2

− 1+c
2

⎤
⎥⎦, (5)

with c = cos θ and s = sin θ [θ ∈ [0,2π )]. Since the behavior
of the walker is obvious at θ = 0,π , we will not treat them.
The position-shift operator S1 (S2) plays a role of moving the
walker to the x (y) direction, as shown in Fig. 1.

When we set c = −1/3 and s = 2
√

2/3, the coin-flip
operator C becomes a Grover coin

C =
∑

x,y∈Z
|x,y〉 〈x,y| ⊗

⎡
⎢⎣

− 1
3

2
3

2
3

2
3 − 1

3
2
3

2
3

2
3 − 1

3

⎤
⎥⎦. (6)

The probability that the walker is observed at position (x,y) ∈
Z is defined by

P[(Xt,Yt ) = (x,y)] = 〈�t |
⎛
⎝|x,y〉 〈x,y| ⊗

2∑
j=0

|j 〉 〈j |
⎞
⎠ |�t 〉 ,

(7)

where (Xt,Yt ) ∈ Z2 denotes the position of the walker at time
t . Finally we set an initial condition

|�0〉 = |0,0〉 ⊗ (α |0〉 + β |1〉 + γ |2〉), (8)
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x

y

FIG. 1. (Color online) The position-shift operator S1 (S2) shifts
the walker to the x (y) direction.

for α,β, and γ ∈ C such that |α|2 + |β|2 + |γ |2 = 1, where
C means the set of complex numbers. Figure 2 illustrates two
examples of the probability distribution in Eq. (7) and we
observe localization around the origin in the pictures.

III. LIMIT LAW OF A RETURN PROBABILITY

The study of return probabilities is a topic of research
interest in the field of random walks as well as quantum walks.
Although there is an analytical result for a return probability
of a one-dimensional DTQW as t → ∞ [22], we have not had
any rigorous result for two-dimensional walks. Ide et al. [22]
computed a limit value of the return probability when the
walker starts from a certain position, and simultaneously
proved localization of the walk. In this section we concentrate
on a return probability of the three-state alternate walk.
Since the walker starts from the origin, we consider the
return probability as the probability that the walker can be
observed at the origin. That is, the return probability at time
t is determined by the probability P[(Xt,Yt ) = (0,0)]. As
t → ∞, we obtain the following limit theorem about the return
probability.

Theorem 1. The return probability is of the
form

lim
t→∞P[(Xt,Yt ) = (0,0)] =

{|η1(θ ; α,β,γ )|2 + |η2(θ ; α,β,γ )|2 + |η1(θ ; γ,β,α)|2 (0 < θ < π),

|η1(θ − π ; α,β,γ )|2 + |η2(θ − π ; α,β,γ )|2 + |η1(θ − π ; γ,β,α)|2 (π < θ < 2π ),
(9)

where

η1(θ ; α,β,γ ) =g3(θ )α + 1
2g2(θ )β + 1

2g1(θ )γ, (10)

η2(θ ; α,β,γ ) = 1
2g2(θ )(α + γ ) + [1 − 2g3(θ )]β, (11)

and

g1(θ ) =2{π (1 − c)2 − s(3 + c2) + 4cθ}
πs

, (12)

g2(θ ) =
√

2{π (1 − c) + 2(cs − θ )}
πs

, (13)

g3(θ ) = s

π
. (14)

Proof. We use a method based on the Fourier analysis
to compute the limit of the return probability. The Fourier
analysis was introduced to quantum walks by Grimmett
et al. [23]. First, we define the Fourier transform |�̂t (a,b)〉 ∈
C3 [a,b ∈ [−π,π )] of the walk at time t as

|�̂t (a,b)〉 =
∑

x,y∈Z
e−i(ax+by) |ψt (x,y)〉 . (15)

The amplitude at position (x,y) ∈ Z2 is extracted by using the
inverse Fourier transform

|ψt (x,y)〉 =
∫ π

−π

da

2π

∫ π

−π

db

2π
ei(ax+by) |�̂t (a,b)〉 , (16)

Equation (2) leads us to the time evolution of the Fourier
transform

|�̂t (a,b)〉 =R(b)ĈR(a)Ĉ |�̂t (a,b)〉 , (17)

where

Ĉ =

⎡
⎢⎣

− 1+c
2

s√
2

1−c
2

s√
2

c s√
2

1−c
2

s√
2

− 1+c
2

⎤
⎥⎦, R(k) =

⎡
⎣eik 0 0

0 1 0
0 0 e−ik

⎤
⎦.

(18)
From Eq. (17), the Fourier transform at time t becomes
|�̂t (a,b)〉 = [R(b)ĈR(a)Ĉ]

t |�̂0(a,b)〉. We express the eigen-
values λj (a,b) (j = 1,2,3) of the unitary matrix R(b)ĈR(a)Ĉ
as follows:

λj (a,b) = eiνj (a,b) (j = 1,2,3), (19)

with

ν1(a,b) = 0, (20)

ν2(a,b) =2 arccos

[
1 + c

2
cos

(
a + b

2

)

+ 1 − c

2
cos

(
a − b

2

)]
, (21)

ν3(a,b) = − 2 arccos

[
1 + c

2
cos

(
a + b

2

)

+ 1 − c

2
cos

(
a − b

2

)]
. (22)

The components of the normalized eigenvector |vj (a,b)〉 (j =
1,2,3) associated with the eigenvalue λj (a,b) are given by

〈0|vj (a,b)〉 = − s(1 − e−ia)√
Nj (a,b)

[eib{(1 + c)eia + 1 − c}λj (a,b)

− {(1 − c)eia + 1 + c}], (23)
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(a) α = β = γ = 1/
√

3 (b) α = γ = 0, β = 1

FIG. 2. (Color online) Probability distribution of three-state alternate quantum walk at time t = 50 on a two-dimensional lattice using the
coin-flip operator with parameters c = −1/3, s = 2

√
2/3. Localization of the probability distribution indicating an alternate walk with two

different initial states is shown in (a) and (b).

〈1|vj (a,b)〉 = 2
√

2√
Nj (a,b)

[λj (a,b)2 − {(1 + c2) cos a cos b − 2c sin a sin b + s2 cos b}λj (a,b) + s2 cos a + c2], (24)

〈2|vj (a,b)〉 = s(1 − e−ia)√
Nj (a,b)

[e−ib{(1 − c)eia + 1 + c}λj (a,b) − {(1 + c)eia + 1 − c}], (25)

where Nj (a,b) (j = 1,2,3) is a normalized factor.
Here, we define a function

F (x,y) =
∫ π

−π

da

2π

∫ π

−π

db

2π

ei(ax+by)

16
{
1 − [ 1+c

2 cos
(

a+b
2

)+ 1−c
2 cos

(
a−b

2

)]2} (x,y ∈ Z). (26)

We use this function later to express the asymptotic behavior of the probability amplitude |ψt (x,y)〉 after many steps. By using
the residue theorem in Eq. (26), we get an integral representation of the function F (x,y)

F (x,y) = 1

8π (1 − c)

∫ π
2

0
cos[(x + y)k]

{
[w1(k) −

√
w1(k)2 − 1]|x−y|√

w1(k)2 − 1
+ [w2(k) +

√
w2(k)2 − 1]|x−y|√

w2(k)2 − 1

}
dk, (27)

where

w1(k) = 2 − (1 + c) cos k

1 − c
, w2(k) = −2 − (1 + c) cos k

1 − c
. (28)

Again, we get a long-time asymptotic behavior of the amplitude at position (x,y) ∈ Z2

|ψt (x,y)〉 =
∫ π

−π

da

2π

∫ π

−π

db

2π

3∑
j=1

ei(ax+by)λj (a,b)t 〈vj (a,b)|�̂0(a,b)〉 |vj (a,b)〉

∼
∫ π

−π

da

2π

∫ π

−π

db

2π
ei(ax+by) 〈v1(a,b)|�̂0(a,b)〉 |v1(a,b)〉 (t → ∞), (29)

where h1(t) ∼ h2(t) (t → ∞) means limt→∞ h1(t)/h2(t) = 1. The Riemann-Lebesgue lemma has been used in Eq. (29). We are
also allowed to employ another form of the eigenvector

|v1(k)〉 = 1√
Ñ1(k)

⎡
⎢⎢⎣

√
2s(ei(a+b)/2 − e−i(a−b)/2)

2i{(1 + c) sin[(a + b)/2] − (1 − c) sin[(a − b)/2]}
−√

2s(e−i(a+b)/2 − ei(a−b)/2)

⎤
⎥⎥⎦, (30)

with

Ñ1(a,b) = 16

{
1 −

[
1 + c

2
cos

(
a + b

2

)
+ 1 − c

2
cos

(
a − b

2

)]2}
. (31)
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Estimating Eq. (29) with Eq. (30), we have an expression of the asymptotic behavior of the probability amplitude |ψt (x,y)〉 at a
large enough time,

〈0|ψt (x,y)〉 ∼
√

2s{−A(α,β)F (x − 1,y) − B(γ,β)F (x − 1,y + 1) + [A(α,β) + B(α,β)]F (x,y)

+ [A(γ,β) + B(γ,β)]F (x,y + 1) − B(α,β)F (x + 1,y) − A(γ,β)F (x + 1,y + 1)}, (32)

〈1|ψt (x,y)〉 ∼ (1 + c)[−A(α,β)F (x − 1,y − 1) − B(γ,β)F (x − 1,y) + B(α,β)F (x,y − 1) + A(α + γ,2β)F (x,y)

+ B(γ,β)F (x,y + 1) − B(α,β)F (x + 1,y) − A(γ,β)F (x + 1,y + 1)]

− (1 − c)[−A(α,β)F (x − 1,y) − B(γ,β)F (x − 1,y + 1) + A(α,β)F (x,y − 1) + B(α + γ,2β)F (x,y)

+ A(γ,β)F (x,y + 1) − B(α,β)F (x + 1,y − 1) − A(γ,β)F (x + 1,y)], (33)

〈2|ψt (x,y)〉 ∼
√

2s{−A(α,β)F (x − 1,y − 1) − B(γ,β)F (x − 1,y) + [A(α,β) + B(α,β)]F (x,y − 1)

+ [A(γ,β) + B(γ,β)]F (x,y) − B(α,β)F (x + 1,y − 1) − A(γ,β)F (x + 1,y)}, (34)

where

A(z1,z2) =
√

2sz1 + (1 + c)z2, B(z1,z2) =
√

2sz1 − (1 − c)z2. (35)

Computing the long-time asymptotic behavior of the amplitude at the origin, we obtain

|ψt (0,0)〉 ∼

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎣

g3(θ )α + 1
2g2(θ )β + 1

2g1(θ )γ
1
2g2(θ )(α + γ ) + (1 − 2g3(θ ))β
1
2g1(θ )α + 1

2g2(θ )β + g3(θ )γ,

⎤
⎥⎦ (0 < θ < π )

⎡
⎢⎣

g3(θ − π )α + 1
2g2(θ − π )β + 1

2g1(θ − π )γ
1
2g2(θ − π )(α + γ ) + (1 − 2g3(θ − π ))β

1
2g1(θ − π )α + 1

2g2(θ − π )β + g3(θ − π )γ

⎤
⎥⎦ (π < θ < 2π ),

(36)

recalling the functions gj (θ ) (j = 1,2,3) in Eqs. (12)–(14).
The limit of the return probability follows from Eq. (36). �

In Fig. 3 we show the return probability for two different
initial states of the walk. We can see that the probability
converges to the limit as time t goes up. In Fig. 4 we show
the probability at time 100 and at the limit with regard to the
parameter θ , which determines the coin-flip operator C.

IV. CONVERGENCE IN DISTRIBUTION ON A RESCALED
SPACE BY TIME

In the previous section, we concentrated on the probability
P[(Xt,Yt ) = (x,y)] and computed the long-time limit of the
return probability P[(Xt,Yt ) = (0,0)]. In this section we will

 0
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time t
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(a) α = β = γ = 1/
√

3

0

1

0  20  40  60  80  100
time t
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ty

(b) α = γ = 0, β = 1

FIG. 3. (Color online) Given the parameter θ which satisfies
cos θ = −1/3 and sin θ = 2

√
2/3, the left (right) figure shows how

the return probability P[(Xt,Yt ) = (0,0)] depends on time t in the
case of α = β = γ = 1/

√
3 (α = γ = 0, β = 1).

present a convergence theorem on a rescaled space by time.
This theorem shows us the overall behavior of the walker after
many steps.

Theorem 2. The three-state alternate DTQW starting from
the origin has a convergence law

lim
t→∞P

(
Xt

t
� x,

Yt

t
� y

)

=
∫ x

−∞
du

∫ y

−∞
dv

{

(θ ; α,β,γ )δo(u,v)

+ ξ (u,v; α,β,γ )

2π2(1 − u2)(1 − v2)
ID(u,v)

}
, (37)

(a) α = β = γ = 1/
√

3 (b) α = γ = 0, β = 1

FIG. 4. (Color online) Return probability at time 100 (blue
points) and the limit (red dot line) for evolution with different initial
states are shown in (a) and (b). We observe the clear overlap of the
walk being found at the origin at time 100, and its limit as t → ∞.
The positive value of the limit implies localization of the walker at
the origin.
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where δo(x,y) denotes a Dirac δ function at the origin and


(θ ; α,β,γ ) =
{|β|2 + Re(αγ )g1(θ ) + Re[(α + γ )β]g2(θ ) + (1 − 3|β|2)g3(θ ) (0 < θ < π ),
|β|2 + Re(αγ )g1(θ − π ) + Re[(α + γ )β]g2(θ − π ) + (1 − 3|β|2)g3(θ − π ) (π < θ < 2π ),

(38)

ξ (x,y; α,β,γ ) = (1 − y)2|α|2 + 2(1 − y2)|β|2 + (1 + y)2|γ |2 + 2
√

2(x − cy)(1 − y)

s
Re(αβ)

− 2
√

2(x − cy)(1 + y)

s
Re(βγ ) + 2{s2 − 2x2 − (1 + c2)y2 + 4cxy}

s2
Re(αγ ), (39)

D =
{

(x,y) ∈ R2

∣∣∣∣ (x + y)2

2(1 + c)
+ (x − y)2

2(1 − c)
< 1

}
. (40)

Proof. Using the eigenvalues λj (a,b) and the normalized eigenvectors |vj (a,b)〉 (j = 1,2,3) of the matrix R(b)ĈR(a)Ĉ, the
(r1,r2)th joint moments (r1,r2 = 0,1,2, . . .) of the random variable (Xt,Yt ) can be expressed as

E
(
Xr1

t Y r2
t

) =
∑

(x,y)∈Z2

xr1yr2P [(Xt,Yt ) = (x,y)]

=
∫ π

−π

da

2π

∫ π

−π

db

2π
〈�̂t (a,b)|Dr1

a D
r2
b |�̂t (a,b)〉

= (t)r1+r2

∫ π

−π

da

2π

∫ π

−π

db

2π

3∑
j=1

(
Daλj (a,b)

λj (a,b)

)r1
(

Dbλj (a,b)

λj (a,b)

)r2

|〈vj (a,b)|�̂0(a,b)〉|2 + O(t r1+r2−1), (41)

with Da = i(∂/∂a), Db = i(∂/∂b), and (t)r = t(t − 1) × · · · × (t − r + 1), where E(X) denotes the expected value of a random
variable X. Obviously, we have Daλ1(a,b)/λ1(a,b) = Dbλ1(a,b)/λ1(a,b) = 0 because of the constant eigenvalue λ1(a,b) = 1.
The eigenvalue λ1(a,b), hence, causes a Dirac δ function at the origin in the limit distribution which we are trying to prove. That
means there is a possibility that localization occurs at the origin on the rescaled space (Xt/t,Yt/t). The measure of localization
generally depends on the initial condition of the walker, which is characterized by the parameter α, β, and γ in this study. The
dependence on the initial condition is expressed as the coefficient of the Dirac δ function. On the other hand, since we compute

Daλj (a,b)

λj (a,b)
= −(−1)j

(1 + c) sin
(

a+b
2

)+ (1 − c) sin
(

a−b
2

)
√

4 − {(1 + c) cos
(

a+b
2

)+ (1 − c) cos
(

a−b
2

)}2
(j = 2,3), (42)

Dbλj (a,b)

λj (a,b)
= −(−1)j

(1 + c) sin
(

a+b
2

)− (1 − c) sin
(

a−b
2

)
√

4 − {(1 + c) cos
(

a+b
2

)+ (1 − c) cos
(

a−b
2

)}2
(j = 2,3), (43)

the eigenvalues λj (a,b) (j = 2,3) give the continuous part in the limit density function. For the joint moments of the rescaled
position (Xt/t,Yt/t), by putting Daλj (a,b)/λj (a,b) = x and Dbλj (a,b)/λj (a,b) = y after t → ∞, we get a convergence
theorem

lim
t→∞E

[(
Xt

t

)r1
(

Yt

t

)r2
]

=
∫ π

−π

da

2π

∫ π

−π

db

2π

3∑
j=1

(
Daλj (a,b)

λj (a,b)

)r1
(

Dbλj (a,b)

λj (a,b)

)r2

|〈vj (a,b)|�̂0(a,b)〉|2

=
∫ ∞

−∞
dx

∫ ∞

−∞
dy xr1yr2

{

(θ ; α,β,γ )δo(x,y) + ξ (x,y; α,β,γ )

2π2(1 − x2)(1 − y2)
ID(x,y)

}
, (44)

with Eqs. (38)–(40). Equation (44) guarantees Theorem 2. �

In Fig. 5 we show the two examples of the continuous part
in the limit density function for a representative initial state
when the walker is evolved using the Grover coin.

V. ENTANGLEMENT GENERATION IN THE
THREE-STATE ALTERNATE WALK AND

A FOUR-STATE WALK

From the earlier result of a four-state DTQW [10] and from
the theorems presented in Secs. III and IV, we clearly see the
presence of a Dirac δ function resulting in localization around

the origin. These localized components are also accompanied
by a diffusing component as a continuous part of the limit
density function. In spite of the similarities, different dimen-
sions of the coin space used for both the walks result in final
states which are very different from one another. To make a fair
comparison of the two kinds of localized walks, we can use the
comparison of a spatial entanglement between the two-spatial
dimension (x-y spatial entanglement) which is common to
both after tracing out the coin space from the final state [12,16].

In Fig. 6 we show the probability distribution for a configu-
ration of the three-state alternate walk and the four-state walk
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(b) α = γ = 0, β = 1

FIG. 5. (Color online) Continuous part of the limit density function (c = −1/3, s = 2
√

2/3).

resulting in localization. Though both probability distributions
after 30 steps of the walk show localization manifesting from
the evolution, the distributions are not identical to each other.

To make a comparison between these two walks, we
calculate an entanglement measure called the negativity [24],
defined by

N (ρ) = ‖ρTb‖ − 1

d − 1
, (45)

where ρTb is the partial transpose of a state ρ in d1 ⊗ d2 (d1 �
d2) quantum systems and ‖ · ‖ is the trace norm. This will
bound the maximum value of the entanglement measure to 1
for the system of all dimensions.

In Fig. 7(a) we present the negativity between the coin and
the position space, N (ρpp), where ρpp = |�t 〉 〈�t |. We can
see that for both the three-state and the four-state DTQW the
value of negativity is nearly the same (close to unity) and only
for the four-state walk do we see oscillations around the mean
value. However, to compare the entanglement generated in
different systems we need to consider the system of the same
dimension. Therefore, as mentioned earlier in this section, by
tracing out the coin space from the density operator ρpp of
both the three-state and the four-state DTQW we will be left
with the reduced density operator ρxy of the same dimension
and that can be used to calculate the entanglement between the
two spatial dimensions.

In Fig. 7(b) the negativity between the two spatial dimen-
sions [N (ρxy)] is shown. We can see that the value of the
negativity is very large for evolution using the three-state

alternate walk compared to the four-state walk. This result
is consistent with the results showing a higher spatial en-
tanglement for a two-state alternate DTQW compared to
the four-state walk [12,16]. This in general shows that the
DTQW on a smaller Hilbert space results in a higher spatial
entanglement in the system. Though it might not be of any
immediate physical significance, it has the potential to be a
resource when spatial entanglement is effectively tapped as a
resource for quantum information protocols.

Before we conclude, we will look into the physical realiz-
ability of the three-state alternate walk on a two-dimensional
lattice. A two-dimensional DTQW so far has been demon-
strated using two walkers on a one-dimensional lattice [7]. This
implementation was realized by exploiting the topologically
equivalent of two walkers acting on a one-dimensional graph
with one walker on a two-dimensional lattice. With the use of
a single three-level system, one can avoid the use of coupled
two-level system to implement walk on a two-dimensional
lattice. Additional to that, in most of the three-level systems,
decoupling one of the levels (state) from the remaining levels
has been demonstrated. This allows the system to be reduced
to the two-level system. Therefore, implementing DTQW in
a three-level system can be engineered to reproduce both the
wide spread probability distribution of the two-state alternate
DTQW and localization of the four-state DTQW.

Physically realizable three-level systems are the particular
physical realization of the qutrit state, namely, three-level
atoms with energies E1, E2, and E3. Atomic systems in the
form of three-level systems have played a significant role in
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(a) Localization in the three-state alternate
DTQW
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(b) Localization in a four-state DTQW

FIG. 6. (Color online) Probability distribution at time t = 30. (a) Three-state alternate walk with the parameters θ = π/2, α = 0, β = 1,
and γ = 0, which give the coefficient 
 = (1 − 2/π ). (b) Four-state walk with coin parameters p = q = 1/2 and initial state parameters
q1 = 1/

√
2, q2 = 1/

√
2, q3 = 0, and q4 = 0 for the walk in Ref. [10], which give the coefficient 
 = (1 − 2/π ).
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FIG. 7. (Color online) Negativity as a measure of entanglement for the three-state alternate walk and the four-state walk as a function of
steps (time). (a) Negativity between particle and position space and (b) negativity between the two spatial dimensions (x-y).

demonstrating various interesting coherent phenomena and
generate diverse quantum effects, for example, two-photon
coherence [25], coherent multilevel photon ionization [26,27],
and Stimulated Raman adiabatic passage (STIRAP) [28].
Recent experimental advancements have been able to demon-
strate sufficient control over the three configurations of
three-level systems (atoms) known as �, cascade, and V

configuration. In most of the three-level systems, decoupling
of one of the level (state) from the remaining levels has
been demonstrated. This allows the system to be reduced to
the two-level system. Engineering the coupling between the
energy levels and converting the energy difference between the
energy levels to translational motion in position space, the coin
and the shift operator can be designed in a three-level atomic
system in optical lattice as it is done in two-level atoms [6].

A single photon as qutrit in Laguerre-Gaussian (LG) modes
with states |L〉, |G〉, and |R〉 carrying orbital angular momenta
of −�, 0, and �, respectively, is another physical system where
the three-state alternate DTQW can be implemented.

VI. DISCUSSION AND SUMMARY

We studied a three-state alternate DTQW starting from the
origin and obtained two limit theorems. The walker, which has
three coin states at each position, moves on a two-dimensional
position space Z2 (square lattice) by alternately repeating a
walk in the x direction followed by a walk in the y direction.
The coin-flip operation for the evolution of the walk in each
dimension was given by a parametrized unitary matrix which
includes a Grover coin. One of the two limit theorems was
the limit of a return probability defined by the probability

that the walker returns to the starting point, and the other
was a convergence in distribution for the position of the
walker on a rescaled space by time. The return probability
can be positive depending on both the initial condition at the
origin and the coin-flip operator. The limit distribution in the
convergence on the rescaled space has both a Dirac δ function
at the origin and a continuous function with a compact support
which is described by an ellipse. From these results, we see
that the three-state alternate DTQW can localize around the
origin. Using negativity as a measure of entanglement, we
also showed that the entanglement generated between the two
spatial dimensions using the three-state DTQW is higher than
the spatial entanglement generated using the four-state DTQW.

Although we computed just the return probability at a
long-time limit, we can also get the long-time limit of the
probability P[(Xt,Yt ) = (x,y)] for any x,y ∈ Z according to
Eqs. (32)–(34). It is, however, hard to calculate the limit due
to the function F (x,y) which is a single-variable integral in
Eq. (27). To know the behavior of the walker after many steps
at any position besides the origin, it would be an interesting
future problem to compute the integral F (x,y) and the limit
limt→∞ P[(Xt,Yt ) = (x,y)].
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