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Long-time limit distributions are key quantities for understanding the asymptotic dy-
namics of quantum walks, and they are known for most forms of one-dimensional quan-
tum walks using two-state coin systems. For two-dimensional quantum walks using a

four-state coin system, however, the only known limit distribution is for a walk using
a parameterized Grover coin operation and analytical complexities have been a major
obstacle for obtaining long-time limit distributions for other coins. In this work how-
ever, we present two new types of long-time limit distributions for walks using different
forms of coin-flip operations in a four-state coin system. This opens the road towards
understanding the dynamics and asymptotic behaviour for higher state coin system from
a mathematical view point.
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1 Introduction

The quantum mechanical analogue to the discrete-time random walk is the discrete-time

quantum walk [1, 2, 3, 4, 5, 6, 7, 8], which evolves a single quantum state using discrete steps

on a discrete lattice in a position space. The total quantum state for the walk is described

on a tensor Hilbert space Hp ⊗ Hc, where Hp and Hc are the position Hilbert space and

the coin Hilbert space spanned by the position basis and the internal states of the walker,

respectively. One of its main features is the fact that it creates a coherent superposition of

the initial state at distinct lattice sites, which leads to an evolution through multiple paths
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resulting in the interference effect dominating the dynamics. These interference effects result

in a quadratically faster spread of the probability distribution compared to classical random

walks [6, 7].

The dynamics of quantum walks on a one-dimensional lattice using different forms of two

state coin operations has been exactly analyzed and a lot of long-time limit theorems have

been reported [9]. With increase in the size of both, the position Hilbert space and coin

Hilbert space, the numerical simulations are limited by the computational power, and exper-

imental demonstrations are limited by precise control over the physical system with a higher

dimensional coin space. Using a two-particle system [10, 11, 12, 13], few configurations of

higher dimensional quantum walks have been experimentally implemented. In these experi-

mental realizations, higher dimensional walks are in the form of two-correlated particles on

a one- and two-dimensional position space. No experimental realization on a single particle

system with four coin states has been achieved yet. Therefore, long time limit theorems are

the best possible approach for understanding the asymptotic behaviour of walks with higher

dimensional coin space. However, due to difficulties in the mathematical analysis of two-

dimensional walks with four internal states, the long-time limit behaviour has until now only

been studied and analyzed for one form of a walk parameterized by a special coin-flip operator

which includes the Grover coin [14]. In this work we focus mainly on the mathematical treat-

ment of quantum walks on a two-dimensional square lattice and present the analytical form

of the long-time behavior of the walk using different forms of coin-flip operators. The new

theorems we present will reveal new properties of the quantum walk on a two-dimensional

lattice, which holds the potential for exploiting these properties for quantum algorithms and

other applications.

In the next section we will define the standard two-dimensional quantum walk with a four-

state system and in Sec. 3 we first briefly review a walk using the Grover coin and present

long-time limit theorems for two-dimensional quantum walks with two different forms of coin-

flip operators recently introduced in Ref. [15]. These new forms of the operators are very

different from the parameterized coin-flip operator used in [14]. The proofs of the two limit

theorems are presented in the same section and we conclude with a summary in Sec. 4.

2 Quantum walk on a two-dimensional lattice

A standard quantum walk on a two-dimensional lattice is defined on a Hilbert space which is

a tensor space of a position space and a coin space. For a walker with a four-state coin, the

position space Hp is spanned by the basis {|x, y〉 : x, y ∈ Z} and the coin space Hc is spanned

by the basis {|l〉 , |u〉 , |d〉 , |r〉},

|l〉 =









1
0
0
0









, |u〉 =









0
1
0
0









, |d〉 =









0
0
1
0









, |r〉 =









0
0
0
1









. (1)

The entire state of the walker |Ψt〉 =
∑

x,y∈Z
|x, y〉 ⊗ |ψt(x, y)〉 ∈ Hp ⊗ Hc at time t ∈

{0, 1, 2, . . .} evolves to the next state |Ψt+1〉 by first applying an operator C, followed by a

position-shift operator S,

|Ψt+1〉 = SC |Ψt〉 , (2)
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where

C =
∑

x,y∈Z

|x, y〉 〈x, y| ⊗ U, (3)

is an operator acting on both, the coin and the position space with a 4× 4 unitary matrix U

as the coin-flip operator acting on the coin space. The position-shift operator is given by

S =
∑

x,y∈Z

(

|x− 1, y〉 〈x, y| ⊗ |l〉 〈l|+ |x, y + 1〉 〈x, y| ⊗ |u〉 〈u|

+ |x, y − 1〉 〈x, y| ⊗ |d〉 〈d|+ |x+ 1, y〉 〈x, y| ⊗ |r〉 〈r|
)

. (4)

Equation (4) means that the position-shift operator S shifts the walker with the coin state

|l〉 (resp. |u〉 , |d〉 , |r〉) to the left (resp. up, down, right). For a generic initial state given by

|Ψ0〉 = |0, 0〉 ⊗
(

α |l〉+ β |u〉+ γ |d〉+ δ |r〉
)

, (5)

where α, β, γ and δ can be any complex numbers satisfying the condition |α|2 + |β|2 + |γ|2 +
|δ|2 = 1, the probability distribution of the walker at time t is given by

P [(Xt, Yt) = (x, y)] = 〈Ψt|



|x, y〉 〈x, y| ⊗
∑

j∈{l,u,d,r}

|j〉 〈j|



 |Ψt〉 , (6)

where (Xt, Yt) denotes the position of the walker after it has been observed at time t.

In the following we will present two forms of coin-flip operations different from the 4× 4

Grover coin operation and analyze the probability distributions after a long time. Our result

in the form of long-time limit theorem will show that the density function reveals features of

the walk that are very different from the known features of the walk using the Grover coin.

3 Two types of limit distributions

For a general quantum walk of a four state system with the coin-flip operator given by

U =









−p q
√
pq

√
pq

q −p √
pq

√
pq√

pq
√
pq −q p√

pq
√
pq p −q









, (7)

and q = 1− p ( p ∈ (0, 1)), its long-time limit distribution is well known [14]. For p = q = 1
2 ,

this parameterized operator takes the form of a Grover coin

U =
1

2









−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1









, (8)

and hence the walk is commonly described as a Grover walk. The result of Watabe et al. [14]

gives the information of the position of the walker on a space rescaled by time t and describes

how the distribution converges as t → ∞. The long time density function can be separated
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into two parts, with one being a Dirac δ-function at the origin and the other a spread-out

continuous function. The Dirac δ-function part implies that the walk strongly localises around

the origin, whereas the continuous function has a quadratic compact support.

Let us briefly review a long-time limit distribution of the Grover walk, which was obtained

by Watabe et al. [14] as

lim
t→∞

P

(

Xt

t
≤ x,

Yt
t

≤ y

)

=

∫ x

−∞

du

∫ y

−∞

dv

{

∆(α, β, γ, δ) δo(u, v) + f(u, v)η(u, v;α, β, γ, δ)ID(u, v)

}

. (9)

Here δo(x, y) is the Dirac δ-function at the origin and

∆(α, β, γ, δ) =1−M1 −
(

1

2
− 1

π

)

(M4 +M5), (10)

f(x, y) =
2

π2(x+ y + 1)(x− y + 1)(x+ y − 1)(x− y − 1)
, (11)

η(x, y;α, β, γ, δ) =M1 −M2x−M3y +M4x
2 +M5y

2 +M6xy, (12)

with

M1 =
1

2
+ ℜ(αδ + βγ), (13)

M2 =|α|2 − |δ|2 + ℜ(−αβ − αγ + βδ + γδ), (14)

M3 =− |β|2 + |γ|2 + ℜ(αβ − αγ + βδ − γδ), (15)

M4 =
1

2
(|α|2 − |β|2 − |γ|2 + |δ|2)−ℜ(αβ + αγ + 3αδ + βγ + βδ + γδ), (16)

M5 =− 1

2
(|α|2 − |β|2 − |γ|2 + |δ|2)−ℜ(αβ + αγ + αδ + 3βγ + βδ + γδ), (17)

M6 =− 2ℜ(−αβ + αγ + βδ − γδ), (18)

ID(x, y) =

{

1
(

x2 + y2 < 1
2

)

,
0 (otherwise).

(19)

The notation ℜ(z) denotes the real part of the complex number z. The first part of the

integral describes the localised part of the distribution and the non-localised part is given by

f(x, y), η(x, y;α, β, γ, δ), and ID(x, y). The probability distribution after t = 100 evolution

steps is shown in Fig. 1(a) and the delocalised part, obtained from the limit distribution, is

displayed in Fig. 1(b).

In the following we will extend the study of two-dimensional quantum walks to two specific

forms of coin-flip operations recently introduced to study nonrepeating forms of discrete-time

quantum walks [15] and derive the long time limit density functions, which are fundamentally

different from the one known for the Grover walk. Most strikingly they do not show localisa-

tion because both limit density functions consist of just a continuous function. One of these

has a biquadratic compact support and the other has a quadratic compact support.
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(b) f(x, y)η(x, y)ID(x, y)

Fig. 1. Grover walk: Figure (a) shows the probability distribution P

[(

Xt

t
, Yt

t

)

= (x, y)
]

at time

t = 100. Figure (b) shows the function f(x, y)η(x, y)ID(x, y) for α = −δ = 1

2
and β = γ = i

2
.

3.1 Biquadratic compact support type

First, we will consider a walk with a coin operation of the form

U =
1√
3









0 1 1 −1
1 0 1 1
1 −1 0 −1
−1 −1 1 0









. (20)

The probability distribution for this walk has recently been studied by Proctor et al. [15] and

they referred to the coin operator given by Eq. (20) as a nonrepeating coin. Here, choosing the

same coin operation, we describe an interesting result by analyzing the mathematical forms of

the limiting functions. Their results suggest that this coin operator leads to a delocalisation of

the quantum walk and it should therefore possess a limit distribution which is different from

that of the quantum walk controlled by the parameterized Grover coin of Eq. (7). In fact,

the limit theorem presented in the following, confirms the absence of a localised component

of the walk not only for a particular initial state, but in general for any initial state at the

origin.

Theorem 1 For the quantum walk governed by the coin-flip operator given in Eq. (20), the

long-time limit distribution can be written as

lim
t→∞

P

(

Xt

t
≤ x,

Yt
t

≤ y

)

=

∫ x

−∞

du

∫ y

−∞

dv f1(u, v) {g1(u, v) + g2(u, v)} η1(u, v;α, β, γ, δ)ID1
(u, v), (21)
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where x, y are real numbers and

f1(x, y) =
1

π2(1− 4x2)(1− 4y2)
√

D1(x, y)
, (22)

D1(x, y) =81(x4 + y4)− 18x2y2 − 18(x2 + y2) + 1, (23)

g1(x, y) =
{

648(x4 + y4) + 576x2y2 − 324(x2 + y2)

+ 53 + 4
{

7− 18(x2 + y2)
}
√

D1(x, y)
}

1

2

, (24)

g2(x, y) =
{

648(x4 + y4) + 576x2y2 − 324(x2 + y2)

+ 53− 4
{

7− 18(x2 + y2)
}
√

D1(x, y)
}

1

2

, (25)

η1(x, y;α, β, γ, δ) =1− 2x
[

|α|2 − |δ|2 + ℜ
{

(−α+ γ − δ)β + (α+ β − δ)γ
}

]

+ 2y
[

|β|2 − |γ|2 + ℜ
{

(β + γ + δ)α+ (α− β + γ)δ
}

]

, (26)

ID1
(x, y) =

{

1
(

D1(|x|, |y|) > 0, 0 ≤ |x|, |y| ≤ 1
3

)

,

0 (otherwise).
(27)

One can note that the function D1(x, y) takes a biquadratic form and determines the shape

of the compact support. To check the result numerically, we show in Figs. 2(a) and (b) the

result obtained after a finite time of walking and the limit density function, respectively. Very

similar features are visible and in particular the expected delocalisation is clearly confirmed.

Since the distribution shown in Fig. 2(a) captures the state of the walker at time t = 100,

not all features of the long time limit are developed as clearly as in the limit density function,

however the overall form and asymmetry already coincide.
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(b) limit density function

Fig. 2. Quantum walk using the coin operator given in Eq. (20). Figure (a) shows the probability

distribution P

[(

Xt

t
, Yt

t

)

= (x, y)
]

at time t = 100 and Figure (b) shows the limit density function

as t → ∞. Here α = −δ = 1

2
, β = γ = i

2
.
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Proof. We can derive the above limit theorem using Fourier analysis [16]. For this, one

starts off with the Fourier transform of the walker at time t,

|Ψ̂t(kx, ky)〉 =
∑

(x,y)∈Z2

e−i(kxx+kyy) |ψt(x, y)〉 , (28)

with kx, ky ∈ [−π, π). Equation (2) then determines the time evolution of the Fourier trans-

form as

|Ψ̂t+1(kx, ky)〉 = Û(kx, ky) |Ψ̂t(kx, ky)〉 , (29)

where Û(kx, ky) = R̂(kx, ky)U and

R̂(kx, ky) =









eikx 0 0 0
0 e−iky 0 0
0 0 eiky 0
0 0 0 e−ikx









. (30)

From the recurrence relation given by Eq. (29), one can obtain

|Ψ̂t(kx, ky)〉 = Û(kx, ky)
t |Ψ̂0(kx, ky)〉 , (31)

and the eigenvalues λj(kx, ky) and the normalized eigenvectors |vj(kx, ky)〉 (j = 1, 2, 3, 4) of

the matrix Û(kx, ky) can be used to express the (r1, r2)-th joint moments (r1, r2 = 0, 1, 2, . . .)

of the random variable (Xt, Yt) as

E(Xr1
t Y

r2
t ) =

∑

(x,y)∈Z2

xr1yr2P[(Xt, Yt) = (x, y)]

=

∫ π

−π

dkx
2π

∫ π

−π

dky
2π

〈Ψ̂t(kx, ky)|Dr1
x D

r2
y |Ψ̂t(kx, ky)〉

=(t)r1+r2

∫ π

−π

dkx
2π

∫ π

−π

dky
2π

4
∑

j=1

{

Dxλj(kx, ky)

λj(kx, ky)

}r1

×
{

Dyλj(kx, ky)

λj(kx, ky)

}r2 ∣
∣

∣〈vj(kx, ky)|Ψ̂0(kx, ky)〉
∣

∣

∣

2

+O(tr1+r2−1) (32)

with Dx = i(∂/∂kx), Dy = i(∂/∂ky) and (t)r = t(t−1)×· · ·× (t−r+1). Here, E(X) denotes

the expected value of the random variable X. Introducing a function

θ1(kx, ky) =
1

2
arcsin

(

2

3
sin kx cos ky

)

, (33)

we have the eigenvalues

λ1(kx, ky) = eiθ1(kx,ky), λ2(kx, ky) = −eiθ1(kx,ky), (34)

λ3(kx, ky) = ie−iθ1(kx,ky), λ4(kx, ky) = −ie−iθ1(kx,ky). (35)
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Hence, the functions Dxλj(kx, ky)/λj(kx, ky) and Dyλj(kx, ky)/λj(kx, ky) are computed as

follows.

Dxλj(kx, ky)

λj(kx, ky)
=











− cos kx cos ky√
9−4 sin2 kx cos2 ky

(j = 1, 2),

cos kx cos ky√
9−4 sin2 kx cos2 ky

(j = 3, 4),
(36)

Dyλj(kx, ky)

λj(kx, ky)
=











sin kx sin ky√
9−4 sin2 kx cos2 ky

(j = 1, 2),

− sin kx sin ky√
9−4 sin2 kx cos2 ky

(j = 3, 4).
(37)

The eigenvector associated to the eigenvalue λj(kx, ky) has an expression














−eikx

{√
3eikyλj(kx, ky)

2 + (e2iky − 1)λj(kx, ky) +
√
3eiky

}

√
3λj(kx, ky)

2 − (eikx + eiky )λj(kx, ky)−
√
3ei(kx+ky)

−eiky

[√
3eikyλj(kx, ky)

2 +
{

ei(kx+ky) + 1
}

λj(kx, ky)−
√
3eikx

]

λj(kx, ky)
{

3eikyλj(kx, ky)
2 − eikx − ei(kx+2ky) + eiky

}















, (38)

from which we get the normalized eigenvector |vj(kx, ky)〉 to compute the moments. Using

the information above, one can see from Eq. (32) that E(Xr1
t Y

r2
t )/tr1+r2 converges as t →

∞, which allows to determine the rescaled position of the walker (Xt/t, Yt/t). By setting

Dxλj(kx, ky)/λj(kx, ky) = x,Dyλj(kx, ky)/λj(kx, ky) = y after t → ∞ in the joint moments

E[(Xt/t)
r1(Yt/t)

r2 ], one gets a convergence theorem

lim
t→∞

E

[(

Xt

t

)r1 (Yt
t

)r2]

=

∫ π

−π

dkx
2π

∫ π

−π

dky
2π

4
∑

j=1

{

Dxλj(kx, ky)

λj(kx, ky)

}r1 {Dyλj(kx, ky)

λj(kx, ky)

}r2 ∣
∣

∣
〈vj(kx, ky)|Ψ̂0(kx, ky)〉

∣

∣

∣

2

=

∫ ∞

−∞

dx

∫ ∞

−∞

dy xr1yr2f1(x, y) {g1(x, y) + g2(x, y)} η1(x, y;α, β, γ, δ)ID1
(x, y), (39)

which guarantees Theorem 1 (See also Eq. (13) in the paper [14]). .

3.2 Quadratic compact support type

Another interesting two-dimensional quantum walk for which a limit theorem can be derived

is the walk using the coin-flip operation

U =
1√
2









0 −1 1 0
1 0 0 −1
1 0 0 1
0 1 1 0









. (40)

Theorem 2 For the quantum walk governed by the coin-flip operator in Eq. (40), one can

find the following long-time limit distribution.

lim
t→∞

P

(

Xt

t
≤ x,

Yt
t

≤ y

)

=

∫ x

−∞

du

∫ y

−∞

dv f2(u, v)η2(u, v;α, β, γ, δ)ID2
(u, v), (41)
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where x, y are real numbers and

f2(x, y) =
4

π2(1− 4x2)(1− 4y2)
, (42)

η2(x, y;α, β, γ, δ) =1− 2x
{

|α|2 − |δ|2 − 2ℜ(βγ̄)
}

+ 2y
{

|β|2 − |γ|2 − 2ℜ(αδ̄)
}

, (43)

ID2
(x, y) =

{

1
(

x2 + y2 < 1
4

)

,

0 (otherwise).
(44)

Note that the compact support of the limit density function is given by a quadratic equa-

tion whereas for the coin discussed in Theorem 1 it was of the form of a biquadratic equation.

Comparing the compact supports obtained for the walks using Eq. (40) and using the Grover

coin [14], one can note that they are identical. However, the limit density function is funda-

mentally different due to the absence of a Dirac δ-function.

We show a finite time probability distribution and the limit density function in Fig. 3 and

one can again see that the limit density function reproduces the characteristic features of the

probability distribution from the discrete-time evolution.
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Fig. 3. Quantum walk using the coin operator given in Eq. (40). Figure (a) shows the probability

distribution P

[(

Xt

t
, Yt

t

)

= (x, y)
]

at time t = 100 and Figure (b) shows the limit density function

as t → ∞. Here α = −δ = 1

2
, β = γ = i

2
.

Proof. This theorem can be proven in a manner very similar to the one used for Theo-

rem 1. The information that we need to compute the limit of the moments E[(Xt/t)
r1(Yt/t)

r2 ]

as t→ ∞, is shown as follows. The unitary matrix Û(kx, ky) = R̂(kx, ky)U has four different

eigenvalues

λ1(kx, ky) = eiθ2(kx,ky), λ2(kx, ky) = −eiθ2(kx,ky), (45)

λ3(kx, ky) = ie−iθ2(kx,ky), λ4(kx, ky) = −ie−iθ2(kx,ky), (46)

in which the function θ2(kx, ky) is defined by

θ2(kx, ky) =
1

2
arcsin(cos kx sin ky). (47)



T. Machida, C.M. Chandrashekar, N. Konno and Th. Busch 1257

These eigenvalues give the functions in Eq. (32),

Dxλj(kx, ky)

λj(kx, ky)
=











sin kx sin ky

2
√

1−cos2 kx sin2 ky

(j = 1, 2),

− sin kx sin ky

2
√

1−cos2 kx sin2 ky

(j = 3, 4),
(48)

Dyλj(kx, ky)

λj(kx, ky)
=











− cos kx cos ky

2
√

1−cos2 kx sin2 ky

(j = 1, 2),

cos kx cos ky

2
√

1−cos2 kx sin2 ky

(j = 3, 4).
(49)

We, moreover, have an expression of the eigenvector















λj(kx, ky)e
ikx(e2iky + 1)

−
√
2
{

λj(kx, ky)
2 − ei(kx+ky)

}

√
2eiky (eikyλj(kx, ky)

2 + eikx)

λj(kx, ky)
{

2eikyλj(kx, ky)
2 − ei(kx+2ky) + eikx

}















, (50)

which associates to the eigenvalue λj(kx, ky) (j ∈ {1, 2, 3, 4}). .

4 Summary

In this work we have examined two different kinds of quantum walks on a two-dimensional

lattice. One of the coin-flip operators used for the walk was previously introduced as a

nonrepeating coin-flip operation [15] whereas, the other one used here can be viewed as a

specific subset of the nonrepeating coin operation. However, the long-time limit distribution

is obtained for the first time for the quantum walk using either Eq. (20) or Eq. (40). These

walks constitute a new class of quantum walks with unique properties compared to the two-

dimensional walks whose coin-flip operator is given by a parameterized coin operation that

contains a Grover coin. We have presented numerical results for finite-time evolution and

long-time limit density functions for these walks in rescaled coordinates (Xt/t, Yt/t). Apart

from giving the explicit forms of the walks and the associated limit theorems, one of our main

findings is that both these forms of quantum walks result in delocalisation of the distribu-

tion for initial states that show localisation for evolutions using the Grover coin operation.

This can be clearly seen from the numerically obtained probability distributions and has been

analytically confirmed by the absence of the term containing a Dirac δ-function in the limit

distributions. Again, our limit theorems prove that the quantum walks have ballistically

spreading distributions which result in delocalisation, with the exact form given in a closed

mathematical form. Each of the exact forms has a unique compact support and exactly ex-

presses the shape of the region where the walker can be observed after the long-time dynamics.

While the shape of the compact support for the quantum walk whose coin-flip operator given

by Eq. (20) looks like a square from the numerical analysis, it is in fact a biquadratic shape.

The limit distribution therefore delivers an insight that the numerical experiment cannot give.

While we have shown the existence of two limit distributions different from the one of

the Grover walk, we speculate that there are many undescribed types of walks which possess

unique distributions and it is a challenging task to describe them from a mathematical view
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point. From the theorems shown in this paper, we can expect that it would be hard to

compute a limit theorem for the quantum walk defined by more general coin operations, but,

we hope that the long-time limit distributions presented here will stimulate future works.
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