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Abstract Here we present neutrino oscillation in the frame-
work of quantum walks. Starting from a one spatial dimen-
sional discrete-time quantum walk we present a scheme of
evolutions that will simulate neutrino oscillation. The set of
quantum walk parameters which is required to reproduce the
oscillation probability profile obtained in both, long range
and short range neutrino experiment is explicitly presented.
Our scheme to simulate three-generation neutrino oscillation
from quantum walk evolution operators can be physically
realized in any low energy experimental set-up with access
to control a single six-level system, a multiparticle three-
qubit or a qubit–qutrit system. We also present the entan-
glement between spins and position space, during neutrino
propagation that will quantify the wave function delocaliza-
tion around instantaneous average position of the neutrino.
This work will contribute towards understanding neutrino
oscillation in the framework of the quantum information per-
spective.

1 Introduction

Neutrino oscillation is a well established phenomenon
explained by quantum field theory (QFT). Pauli first proposed
the neutrino to explain the continuous spectrum of electron
in beta decay [1]. In the standard model (SM) description
neutrinos are massless and a very weakly interacting parti-
cles. However, in order to give a correct interpretation to the
experimental results it was established that the neutrinos are
massive and leptons mix [2–4]. Neutrino oscillation, which
implies neutrinos can change from one flavor to another, is
also a consequence of the neutrino masses and lepton mix-
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ing [5]. Hence, neutrino oscillations indicate an incomplete-
ness of the SM and opens a window for physics beyond SM.

The last few years have seen an increasing interest by
the physics community in reconstructing and understanding
physics from a quantum information perspective, that is to
say, “It from qubit” [6–8]. This approach will give us access to
understanding various natural physical processes in the form
of quantum information processing. This will also facilitate
us to simulate inaccessible and experimentally demanding
high energy phenomena in low energy quantum bit (qubit)
systems. Parameter tuneability in protocols that can simulate
real effects allows access to different physical regimes which
are not accessible in real particle physics experiments. Thus,
we can anticipate a significant contribution to our understand-
ing of physics beyond known standard theories via quantum
simulations.

Any standard quantum information processing protocols
on a basic unit of quantum information, that is, the qubit, can
be described using three steps: (a) initial state preparation,
(b) evolution operations, and (c) measurements. In this work,
starting from initial state preparation of qubit we will present
a scheme of evolution that can simulate the three-flavor neu-
trino oscillation. To simulate neutrino oscillations where the
dynamics of each flavor is defined by the Dirac equation,
we will use discrete-time quantum walk (DTQW) evolution
operators. The DTQW, defined as the evolution of a wave
packet in a superposition of position space can also be viewed
as a physical dynamics of information flow [9,10], which can
be engineered to simulate various quantum phenomena, for
example, like Anderson localization [11], the Dirac equa-
tion [12–15], and topologically bound states [16]. Recent
results have shown that one-dimensional DTQWs produce
the free Dirac equation in the small mass and momentum
limit [13]. The neutrino mass eigenstates being the solution of
the free Dirac Hamiltonian was the main motivation for us to
connect the simulation of the free Dirac equation and neutrino
oscillation with the DTQW. This will also allow us to under-
stand neutrino oscillation in the framework of DTQW whose
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dynamics is discrete- in both, space and time. The description
of the dynamics in the form of a unitary operation for each
discrete time step will help us to address the quantum corre-
lations between the position space and spin degree of free-
dom as a function of time. This discrete approach will also
lead towards simulating various high energy phenomena and
addressing the dynamics of quantum correlations between
different possible combination of Hilbert spaces involved in
the dynamics.

To simulate oscillations between three neutrino flavors
we present DTQW on a system with six internal degrees of
freedom which physically can be realized using a single six-
dimensional system or a three-qubit system or a qubit–qutrit
system. With DTQW being experimentally implemented in
various physical systems [17–20], simulation of the long
and short range neutrino oscillations on different low energy
physical systems will also easily be realizable as a function
of the number of walk steps. By preparing different initial
states, different types of neutrino oscillations can be simu-
lated in a simple table-top experimental set-up which are not
straightforward in real world neutrino oscillation experimen-
tal set-ups.

For the DTQW parameters which will simulate neutrino
oscillation, we will calculate the entropy of the density matrix
as a function of DTQW steps. This entropy which captures
information content of the evolution of the neutrino density
matrix can be effectively used to quantify the wave func-
tion delocalization in position space. We will also calculate
the correlation entropy between the position space and par-
ticular neutrino flavor as measure of possible information
extractable about the whole state of the neutrino wave func-
tion when we detect spin part of that particular flavor state.
This simulation and information from entropy will contribute
towards understanding the role of quantum correlations in
neutrino oscillations reported recently [21,22]. Exploring
neutrino physics in general from quantum information per-
spective will easily be accessible. This could further lead to
a way to use quantum simulations and quantum information
to study physics beyond SM and understand the quantum
mechanical origin of the some of the interesting phenomena
in nature.

The paper is organized as follows. In Sect. 2 we present a
brief introduction of the neutrino oscillation theory. In Sect. 3,
we introduce the DTQW evolution, we use for simulation of
neutrino oscillation. In Sect. 4 we present the scheme for sim-
ulation of the three-flavor neutrino oscillation using one spa-
tial dimensional DTQW. In Sect. 5, we numerically simulate
these oscillations and present the DTQW evolution param-
eters that recover the short and long range neutrino oscilla-
tions. In Sect. 6 we present entanglement between position
space and internal degrees of freedom of the neutrino during
propagation. Finally we will end with concluding remarks in
Sect. 7.

2 Physics of the neutrino oscillation

Here, we give a brief discussion of the theory of neutrino
oscillations [23,24]. So far, experimentally three flavors of
the neutrinos, νe, νμ, and ντ , have been detected. The neutrino
of a given flavor are defined by the leptonic W -boson decay.
That is, the W-boson decays to a charged lepton (e, μ, or τ )
and a neutrino. We will define a neutrino as νe, νμ, or ντ when
the corresponding charged leptons are e, μ, or τ . Studies have
reported that neutrinos have masses and lepton mixing means
that there is some spectrum of the neutrino mass eigenstates
|νi 〉. Using this we can write the neutrinos of definite flavor
as a quantum superposition of the mass eigenstates1

|να〉 =
∑

j

U∗
α j |ν j 〉 (1)

where α = e, μ, τ , and j = 1, 2, 3. U∗
α j is the com-

plex conjugate of the α j th component of the matrix U . U
is a 3 × 3 unitary matrix and is referred to as the Maki–
Nakagawa–Sakata (MNS) matrix, or as the Pontecorvo–
Maki–Nakagaea–Sakata (PMNS) matrix [25]. The matrix U
and its decomposition can be written as

⎡

⎣
Ue1 Ue2 Ue3

Uμ1 Uμ2 Uμ3

Uτ1 Uτ2 Uτ3

⎤

⎦ =
⎡

⎣
1 0 0
0 c23 s23

0 −s23 c23

⎤

⎦

⎡

⎣
c13 0 s13e−iδ

0 1 0
−s13eiδ 0 c13

⎤

⎦

×
⎡

⎣
c12 s12 0

−s12 c12 0
0 0 1

⎤

⎦

⎡

⎣
eiα1/2 0 0

0 eiα2/2 0
0 0 1

⎤

⎦ ,

(2)

where ci j ≡ cos θi j and si j ≡ sin θi j with θi j being the
mixing angle, and α1, α2, and δ are CP-violating phases. The
state |ν j 〉 ∈ Hspin ⊗ span{|k j1〉 , |k j2〉 , |k j3〉} is the mass
eigenstate of the free Dirac Hamiltonian,

Hj = �ξ . �̂p j c + βm jc
2 (3)

where c is the velocity of light in free space, m j is the mass,

�̂p j is momentum operator corresponding to j th particle, with

positive energy eigenvalue E j =
√

|�k j |2c2 + m2
j c

4. Its prop-
agation is described by the plane wave solution of the form

〈�x |ν j (t)〉 = e
− i

h̄

(
E j t−�k j .�x

)

〈�x |ν j (0)〉 (4)

where t is the time of propagation, �k j is the three momenta,
and �x is the position of the particle in the mass eigenstate
from the source point. As the neutrino mass is very small,

1 For the case of ultra-relativistic neutrinos, we can derive this standard
flavor state (Eq. 1) in a more rigorous way in the framework of quantum
field theory [37].
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they are ultra-relativistic particles (|�k j | 	 m jc) and we can
approximate the energy as

E j =
√

|�k j |2c2 + m2
j c

4 
 |�k j |c + m2
j c

3

2k j
≈ E + m2

j c
4

2E
(5)

where E ≈ |�k j |c, and the same for all j (taken for simplic-
ity). Now, consider a neutrino beam να which is created in a
charged current interaction. After time t , the evolved state is
given by

〈�x |να(t)〉 =
∑

j

U∗
α j e

− i
h̄

(
E j t−�k j .�x

)

〈�x |ν j 〉

=
∑

β

∑

j

U∗
α j e

− i
h̄

(
E j t−�k j .�x

)

Uβ j 〈�x |νβ〉 . (6)

For simplicity we will work with one-dimensional space, so
our choice will be �k j = (k, 0, 0), the same for all j . This
means

〈k|να(t)〉 =
∑

β

∑

j

U∗
α j e

− i
h̄ E j tUβ j 〈k|νβ〉 . (7)

As neutrinos are ultra-relativistic particles, we can also
replace c× t by the traveled distance x . Using these assump-
tions and Eq. (5), the amplitude of finding the flavor state
|νβ〉 in the original |να〉 beam at time t is given by

〈νβ |k〉 〈k|να(t)〉 =
∑

j

U∗
α j e

−im2
j c

3 L
2Eh̄ Uβ j (8)

where L ≈ ct is the traveled distance. Squaring it we find
the transition probability να(t = 0) → νβ(t) and it is given
by

P
(
να → νβ

) = δαβ − 4
∑

j>r

Re
(
U∗

α jUβ jUαrU
∗
βr

)

× sin2
(

	m2
jr
Lc3

4Eh̄

)

+ 2
∑

j>r

Im
(
U∗

α jUβ jUαrU
∗
βr

)

× sin

(
	m2

jr
Lc3

2Eh̄

)
, (9)

where 	m2
jr ≡ m2

j −m2
r . If there is no CP violation we can

choose the mixing matrix U to be real. This will ensure that
we will not have an imaginary part in the oscillation formula.
Including the factors h̄ and c, we can write the argument of the

oscillatory quantity sin2
(
	m2

jr
Lc3

4Eh̄

)
that appears in Eq. (9)

by
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Fig. 1 Neutrino oscillation probabilities for an initial electron neu-
trino. Here, we show the oscillation probability νe(0) → νe(t) (blue),
νe(0) → νμ(t) (green), νe(0) → ντ (t) (red). The left figure (a) gives
long range neutrino oscillation and the right figure (b) gives short range
neutrino oscillation

	m2
jr
Lc3

4Eh̄
= 1.27	m2

jr (eV
2)

L(Km)

E(GeV )
. (10)

So for large L/E , neutrino oscillation provides experimental
access to very tiny neutrino masses. In Fig. 1, we show the
probabilities for the initial flavor |νe〉 to be in |νe〉, |νμ〉, |ντ 〉
after time t , with Fig. 1a showing long range and Fig. 1b
showing short range oscillation. These probability transition
oscillation plots are obtained assuming a Normal Ordered
(NO) neutrino mass spectrum (m3 > m2 > m1). The oscil-
lation parameters used here are given as follows [26]:

	m2
21 = 7.50 × 10−5 eV2, (11)

	m2
31 = 2.457 × 10−3 eV2, (12)

	m2
32 = 2.382 × 10−3 eV2, (13)

E = 1 GeV. (14)

As δ has not been determined by experiments, it can take a
value anywhere between 0 to 2π and for simplicity we have
taken δ = 0 for our oscillation plots.
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3 Discrete-time quantum walk

The discrete-time quantum walk (DTQW) is a quantum ana-
logue of the classical random walk which evolves the particle
with an internal degree of freedom in a superposition of posi-
tion space. The Hilbert space on which the walk evolves is
H = Hc⊗Hp whereHc is spanned by the internal degrees of
freedom of the particle which hereafter will be called a coin
space and Hp is spanned by the position degree of freedom.
Each step of the DTQW evolution operator W is a compo-
sition of the quantum coin operator C and a coin dependent
position shift operator S,

W = S(C ⊗ I ). (15)

The identity operator I in (C⊗ I ) acts only on spatial degree
of freedom and operator C acts only on the coin space. The
operator C evolves the particles basis states to the superpo-
sition of the basis states and the operator S shifts the particle
to the superposition of position states depending on the basis
states of the particle. DTQW on a one-dimensional space is
commonly defined on a particle with two internal degrees of
freedom, | ↓〉 and | ↑〉. Therefore, the coin operation C can
be any 2 × 2 unitary operator and the shift operator which
shifts the state by a distance a in position space will be of the
form

S = |↓〉 〈↓| ⊗ T− + |↑〉 〈↑| ⊗ T+ (16)

where

T− =
∑

x∈aZ
|x − a〉 〈x | , T+ =

∑

x∈aZ
|x + a〉 〈x | = T †

−.

(17)

The operator T− shifts the particle position to one step farther
along the negative x-axis and T+ shifts the particle position
one step along the positive x-axis. This standard definition of
DTQW evolves quadratically faster in position space when
compared to the classical random walk. This description has
been extended to systems with both higher spatial dimen-
sion and higher coin (particles internal) dimensions, respec-
tively [27–30].

Here we will define the DTQW evolution in one spatial
dimension x on a particle with d distinct coin space. We will
set each discrete position space step to a and discrete time
step to δt to be the same throughout the evolution of the
walk. For a d-dimensional system with basis state |q〉 where
q ∈ {1, 2, 3, . . . , d} the spatial shift operation can be defined
as

S =
d∑

q=1

|q〉 〈q| ⊗ Tqq . (18)

Depending on the value of q, we will have two possible forms
of Tqq given by T− and T+ with |x〉 ∈ Hp (the space has to
be periodic or infinite) and |q〉 ∈ Hc, and the coin operation
C is a d × d square unitary matrix.

As the momentum operator p̂ is the generator of spatial
translations in quantum mechanics we can write the compo-
nents of the shift operators in the form

T+ = e−i p̂a
h̄ =

∑

k

e−i kah̄ |k〉 〈k| ,

T− = ei
p̂a
h̄ =

∑

k

ei
ka
h̄ |k〉 〈k| , (19)

where |k〉 is a momentum eigenvector with eigenvalue k. In
the following section we will develop on this description of
DTQW to simulate the neutrino oscillation probability.

4 Mimicking neutrino oscillation by quantum walk

There are three mutually orthonormal Dirac mass eigenstates
of neutrino, each of the them have two spin degrees of free-
dom. Hence, the complete neutrino dynamics in one spatial
dimension is described using six internal degrees of freedom.
To understand neutrino oscillation dynamics from DTQW
perspective and simulate neutrino oscillation in any other
physical system, we need to consider system in which we
can access six internal degrees of freedom. Let us define the
internal space basis as

[
|1,↑〉 + 0 |1,↓〉

]
⊕

[
0 |2,↑〉 + 0 |2,↓〉

]

⊕
[
0 |3,↑〉 + 0 |3,↓〉

]
= (1 0 0 0 0 0 )T = |ζ1〉 ,

[
0 |1,↑〉 + |1,↓〉

]
⊕

[
0 |2,↑〉 + 0 |2,↓〉

]

⊕
[
0 |3,↑〉 + 0 |3,↓〉

]
= (0 1 0 0 0 0 )T = |ζ2〉 ,

[
0 |1,↑〉 + 0 |1,↓〉

]
⊕

[
|2,↑〉 + 0 |2,↓〉

]

⊕
[
0 |3,↑〉 + 0 |3,↓〉

]
= (0 0 1 0 0 0 )T = |ζ3〉 ,

[
0 |1,↑〉 + 0 |1,↓〉

]
⊕

[
0 |2,↑〉 + |2,↓〉

]

⊕
[
0 |3,↑〉 + 0 |3,↓〉

]
= (0 0 0 1 0 0 )T = |ζ4〉 ,

[
0 |1,↑〉 + 0 |1,↓〉

]
⊕

[
0 |2,↑〉 + 0 |2,↓〉

]

⊕
[
|3,↑〉 + 0 |3,↓〉

]
= (0 0 0 0 1 0 )T = |ζ5〉 ,

[
0 |1,↑〉 + 0 |1,↓〉

]
⊕

[
0 |2,↑〉 + 0 |2,↓〉

]

⊕
[
0 |3,↑〉 + |3,↓〉

]
= (0 0 0 0 0 1 )T = |ζ6〉 , (20)
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where we have used the vector representation equivalence,

| j,↑〉 = (1 0)T ; | j,↓〉 = (0 1)T for all j = 1, 2, 3.

The dynamics of each flavor of the neutrino is defined
using the Dirac Hamiltonian. Earlier results have reported a
simulation of the two state Dirac Hamiltonian for a massive
particle [13,14]. Therefore, to simulate a six state neutrino
dynamics we will form the set of three pairs,

span{|1,↑〉 , |1,↓〉}, span{|2,↑〉 , |2,↓〉},
span{|3,↑〉 , |3,↓〉}, (21)

and define a DTQW with different coin parameters for each
pair. For this purpose, we will represent the coin space in the
form

Hc = span
{

|ζ1〉 , |ζ2〉 , |ζ3〉 , |ζ4〉 , |ζ5〉 , |ζ6〉
}

= span
{{ |1,↑〉 , |1,↓〉}

⊕
{|2,↑〉 , |2,↓〉}

⊕
{|3,↑〉 , |3,↓〉 }}

.

With three coins using different parameters the complete evo-
lution operator composing of coin and shift operator will be
in block diagonal form and one time step (δt) of the walk
operator will look like

W =
⊕

j=1,2,3

Wj = S(I ⊗ C) =
⊕

j=1,2,3

S j (I ⊗ C j ) (22)

where the quantum coin operation and coin state (spin)
dependent position shift operators are defined as

C j = cos θ j | j,↑〉 〈 j,↑| + sin θ j

(
| j,↑〉 〈 j,↓|

− | j,↓〉 〈 j,↑|
)

+ cos θ j | j,↓〉 〈 j,↓| (23)

and

S j = T+ ⊗ | j,↑〉 〈 j,↑| + T− ⊗ | j,↓〉 〈 j,↓| . (24)

In Eq. (22), the j = 1 sector operates on span{|1,↑〉 , |1,↓〉}
⊗ Hp, the j = 2 sector operators on span{|2,↑〉 , |2,↓〉} ⊗
Hp and the j = 3 sector operates on span{|3,↑〉 , |3,↓〉} ⊗
Hp.

The effective Hamiltonian acting on the j th sector, Hj ,
is defined as h̄

δt i ln(Wj ), where h̄ is the reduced Planck
constant. Hj takes the form of a one spatial dimensional
Dirac Hamiltonian for some particular range of walk param-
eters [13]. The coin operation is homogeneous and the shift
operator is diagonalizable in the momentum basis {|k〉}, and
hence the walk operator is diagonalizable in the same basis.

Denoting ka
h̄ as k̃, the eigenvector of Hj corresponding to

the positive eigenvalue,

E j = h̄

δt
cos−1(cos θ j cos k̃) for all j = 1, 2, 3,

and the corresponding eigenvectors can be written as

|ν1〉 =
(
f (θ1, k) g(θ1, k) 0 0 0 0

)T ⊗ |k〉 ,

|ν2〉 =
(

0 0 f (θ2, k) g(θ2, k) 0 0
)T ⊗ |k〉 ,

|ν3〉 =
(

0 0 0 0 f (θ3, k) g(θ3, k)
)T ⊗ |k〉 , (25)

where

f (θ j , k) = sin θ j e
−i k̃

√
sin2 θ j +

(
cos θ j sin k̃ −

√
1 − cos2 θ j cos2 k̃

)2

g(θ j , k) =
i
(

cos θ j sin k̃ −
√

1 − cos2 θ j cos2 k̃
)

√
sin2 θ j +

(
cos θ j sin k̃ −

√
1 − cos2 θ j cos2 k̃

)2
.

(26)

The initial state |�(0)〉 of the neutrino corresponding to
electron is prepared using the operator U acting on each sec-
tor,

|�(0)〉 = |νe〉 =
∑

j=1,2,3

U∗
ej |ν j 〉 . (27)

This initial state is a momentum eigenstate. After t = integer
×δt steps of the walk using the evolution operator W we get

|�(t)〉 = W

⌊
t
δt

⌋

|�(0)〉 =
∑

j=1,2,3

e−i 1
h̄ E j tUej |ν j 〉 . (28)

Therefore, the survival probability of the state, |νe〉 w.r.t. the
time evolution is defined by

Pe(t) = P(νe(t = 0) → νe(t))

= | 〈�(0)|�(t)〉 |2 = |
∑

j=1,3,5

e−i 1
h̄ E j tUej |2. (29)

Similarly, the oscillation probabilities of the other flavors
are

Pμ(t) = P(νe(t = 0) → νμ(t)) = | 〈νμ|�(t)〉 |2, (30)

Pτ (t) = P(νe(t = 0) → ντ (t)) = | 〈ντ |�(t)〉 |2. (31)

In this scheme, all the states like in Eq. (25) are evolved in
the momentum basis as it was used to implement the walk
in momentum basis [33]. In the momentum basis the shift
operators are diagonal; therefore, for a state in the momen-
tum basis the whole walk operator will just work like a coin
operator.
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However, if one has to implement this walk in a position
basis, the wave function has to be distributed across position
space because of the relation

|k〉 ∝ 1√
2N + 1

N∑

x=−N

e− ikx
h̄ |x〉 , (32)

where 2N+1 is the total number of sites. For our description,
position space has to be periodic or infinite. For a real sim-
ulation purpose it is reasonable to choose a periodic lattice
with the identification N + 1 ≡ −N . For that case, in place
of x ∈ a Z we need x ∈ a Z2N+1.

From the above scheme directly we can tell that one six-
dimensional quantum particle can fully simulate the neutrino
oscillation mechanism. But experimentally it is difficult to
find a six-dimensional system. So, we present a potential
many particle system which can simulate neutrino oscilla-
tions.

Three-qubit system The qubit has two degrees of free-
dom denoted by |0〉 = (1 0)T , |1〉 = (0 1)T . A three-qubit
system formed by tensor product of three vector space asso-
ciated with each qubit will produce an eight-dimensional sys-
tem. But for simulating three-flavor neutrino oscillations we
need six dimensions. So, we will confine ourselves only to

the vector space span
{

|000〉 ≡ |ζ1〉 , |001〉 ≡ |ζ2〉 , |010〉 ≡
|ζ3〉 , |011〉 ≡ |ζ4〉 , |100〉 ≡ |ζ5〉 , |101〉 ≡ |ζ6〉

}
. The coin

and the shift operator which form the evolution operator of
the form given in Eq. (22) for a three-qubit system can be
written in the following way:

C = cos θ1 |000〉 〈000| + sin θ1 |000〉 〈001|
− sin θ1 |001〉 〈000| + cos θ1 |001〉 〈001|
+ cos θ2 |010〉 〈010| + sin θ2 |010〉 〈011|
− sin θ2 |011〉 〈010| + cos θ2 |011〉 〈011|
+ cos θ3 |100〉 〈100| + sin θ3 |100〉 〈101|
− sin θ3 |101〉 〈100| + cos θ3 |101〉 〈101| (33)

and

S = T+ ⊗
(

|000〉 〈000| + |010〉 〈010| + |100〉 〈100|
)

+ T− ⊗
(

|001〉 〈001| + |011〉 〈011| + |101〉 〈101|
)
.

(34)

Here the coin operations C and shift S that act on the vector
space span{|110〉 , |111〉} are set to be zero operators. Thus
from the complete dim(Hc) = 8 we will be using only six
dimensions.

Therefore, the state that is equivalent to the mass eigen-
states of the neutrino flavor is

|ν1〉 = (
f (θ1, k) |000〉 + g(θ1, k) |001〉 ) ⊗ |k〉 ,

|ν2〉 = (
f (θ2, k) |010〉 + g(θ2, k) |011〉 ) ⊗ |k〉 ,

|ν3〉 = (
f (θ3, k) |100〉 + g(θ3, k) |101〉 ) ⊗ |k〉 . (35)

Qubit–qutrit sytem Similarly, we can simulate the same
dynamics by a qubit–qutrit system. The coin space is the
tensor product of coin spaces of qubit and qutrit. The qubit
has two degrees of freedom, |0〉 = (1 0)T , |1〉 = (0 1)T , and
the qutrit has three degrees of freedom, |0〉 = (1 0 0)T , |1〉 =
(0 1 0)T , |2〉 = (0 0 1)T , and together they form a six-
dimensional space.

For this system, |00〉 ≡ |ζ1〉 , |01〉 ≡ |ζ2〉 , |02〉 ≡
|ζ3〉 , |10〉 ≡ |ζ4〉 , |11〉 ≡ |ζ5〉 , |12〉 ≡ |ζ6〉 . The coin and
shift operator which will form the evolution operator of the
form in Eq. (22) can be written as

C = cos θ1 |00〉 〈00| + sin θ1 |00〉 〈01|
− sin θ1 |01〉 〈00| + cos θ1 |01〉 〈01|
+ cos θ2 |02〉 〈02| + sin θ2 |02〉 〈10|
− sin θ2 |10〉 〈02| + cos θ2 |10〉 〈10|
+ cos θ3 |11〉 〈11| + sin θ3 |11〉 〈12|
− sin θ3 |12〉 〈11| + cos θ3 |12〉 〈12| (36)

and

S = T+ ⊗
(

|00〉 〈00| + |02〉 〈02| + |11〉 〈11|
)

+ T− ⊗
(

|01〉 〈01| + |10〉 〈10| + |12〉 〈12|
)
. (37)

For this purpose, the state that is equivalent to the mass eigen-
states of neutrino flavor is

|ν1〉 = (
f (θ1, k) |00〉 + g(θ1, k) |01〉 ) ⊗ |k〉 ,

|ν2〉 = (
f (θ2, k) |02〉 + g(θ2, k) |10〉 ) ⊗ |k〉 ,

|ν3〉 = (
f (θ3, k) |11〉 + g(θ3, k) |12〉 ) ⊗ |k〉 . (38)

5 Numerical simulation

Simulation of the neutrino oscillation from DTQW can be
established by finding a correspondence (ideally one-to-
one mapping) between neutrino oscillation parameters and
DTQW evolution parameters.

We need to satisfy two conditions simultaneously to sim-
ulate neutrino oscillation: (i) θ j and k̃ should be small in
Eq. (22) such that the DTQW produces Dirac Hamiltonian.
(ii) Neutrinos are ultra-relativistic particles, so the relation
k̃ >> θ j for all j = 1, 2, 3 should be satisfied.

The Dirac equation will be produced when we identify
θ j = m jc2 δt

h̄ and k̃ = ka
h̄ = kc δt

h̄ . Then in comparison with
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Eq. (10) of the neutrino oscillation,

	m2
jr
Lc3

4Eh̄
= (E j − Er )

2

t

h̄

≈ t

2δt

[√
k̃2 + θ2

j −
√
k̃2 + θ2

r

]

≈ (θ2
j − θ2

r )

4k̃

t

δt
. (39)

For the case of the neutrino energy 1 GeV, kc = O(109 eV)
⇒ k̃ = O(1024s−1) δt . Then, to have small k̃, δt should

be at most O(10−26 s). Hence, 	θ2
32 = 	m2

32c
4

(
δt
h̄

)2 ≈
O(10−25), 	θ2

21 = 	m2
21c

4
(

δt
h̄

)2 ≈ O(10−27).

Hence the required number of walk steps to produce a
short range and a long range oscillation are O(1025) and
O(1026), respectively.

For these kinds of order of δt , 	θ2
i j , the number of walk

steps is very difficult to achieve in real lattice experiments
presently.

We should note that, if we consider the walk time step size
δt = O(tp), the lattice space step size a = O(l p), where
the Planck time = tp = 5.3912 × 10−44 s, Planck length
= l p = 1.6162 × 10−35 m, then k̃ = O(10−19),	θ2

32 =
O(10−59),	θ2

21 = O(10−61) and the required number of
walk steps for short and long range oscillations are O(1042)

and O(1043), respectively. So, in principle it is possible to
satisfy both conditions (i), (ii) and simulate neutrino oscil-
lation exactly by DTQW, but it is hard to realize in the real
world.

Hopefully, the oscillation nature is determined by the
quantity ωt, where ω = E1−E2

h̄ . Only the condition to sim-
ulate neutrino oscillation is that ωt will be the same in real
experiment as well as in simulation system. It implies that if
we increase the frequency ω, then we can decrease the num-
ber of walk steps which can be realizable. Thus in order to
successfully simulate, we have to increase the value of the
cyclic frequency,
[√

k̃2 + θ2
j −

√
k̃2 + θ2

r

]
,

such that the same oscillation profile can be obtained with
a smaller number of walk steps t

δt . That is to say, we are
zooming in into the frequency and zooming out of the number
of DTQW steps.

The Dirac dynamics is only produced by DTQW evolution
when θ j and k̃ both are small. Respecting this condition, the
numbers of walk steps we have chosen are 450 and 4500 for
short and long range oscillation profiles, respectively. With
the choices of parameters k̃ = 0.01 rad, θ1 = 0.001 rad,
θ2 = 0.00615654 rad, θ3 = 0.0664688 rad, In Fig. 2 we
show the neutrino oscillation probability as a function of the
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Fig. 2 Oscillation probabilities obtained by numerical simulation of
DTQW for an initial state that mimics the electron neutrino. Our
choices for the coin parameters to reproduce the oscillations in Fig.
1 are θ1 = 0.001 rad, θ2 = 0.00615654 rad, θ3 = 0.0664688 rad.
Here, we show the oscillation probability of νe(0) → νe(t) (blue),
νe(0) → νμ(t) (green), νe(0) → ντ (t) (red). a Long range neutrino
oscillation is obtained for 4500 time steps of the walk. b Short range
neutrino oscillation obtained for 450 time steps of the walk

number of steps of DTQW. Both the long range and short
range neutrino flavor oscillations shown in Fig. 1 obtained
from the real neutrino experiment and those from our DTQW
simulation, Fig. 2, are matching perfectly.

Instead of running the quantum walker for 4500 and 450
steps in a single run, we can divide the whole profile, respec-
tively, in 450 and 45 runs with each run happening for 10
steps of DTQW. For that case, instead of taking the neutrino
flavor state as the initial state for each run, we have to take for
the r th run r ∈ [1, 450] and [1, 45], respectively, for the long
and short range case; the initial state will be W (r−1)10 |νe〉 .

Else, we can store the final state, produced at the end of
(r − 1)th run, and can start with that state, for the next run.
We can further reduce the number of walk steps to obtain
the same oscillation profile by going to the non-relativistic
regime, where momentum can be neglected w.r.t. the masses
of the neutrino [38]. But there, the frequencies of the oscil-
lation will be proportional to the linear differences, namely
m j − ml , not, as usual, m2

j − m2
l .

In the previous section we presented the three possible
ways of simulation using: (1) a single six-dimensional sys-
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tem, (2) a three-qubit system, or (3) a qubit–qutrit system.
All the schemes are equivalent from the numerical simu-
lation perspective, because all the operators are defined by
dim{Hc ⊗ Hp} × dim{Hc ⊗ Hp} matrices and vectors
∈ Hc ⊗ Hp, where dim{Hc} = 6.

6 Entanglement entropy during neutrino oscillation

6.1 Entanglement between spin and position space

In the previous sections we have assumed that all the particles
are in the same momentum eigenstate |k〉 , but in reality they
can be in a superposition of momentum eigenstates.

For that case, we have to define the electron-neutrino state
as

|νe〉 =
∑

k

p(k, e) |νke 〉 ⊗ |k〉 =
∑

k, j

p(k, e)U∗
ej |νkj 〉 ⊗ |k〉

(40)

where |νke 〉 denotes the spin part of electron neutrino when
that is in some particular momentum eigenstate |k〉. |νkj 〉 is
the spin part of the j th mass eigenstate when the neutrino is
in some particular momentum eigenstate |k〉.

Let us consider the initial state of the particle, |ψ(0)〉 =
|νe〉 , then after

⌊
t
δt

⌋
steps of walk evolution we have the

state

|ψ(t)〉 =
∑

k, j

p(k, e)U∗
ej e

−iωk
j t |νkj 〉 ⊗ |k〉 (41)

where ωk
j = 1

h̄ E j (k); E j (k) is the positive energy eigen-
value of the j th mass eigenstate, when the corresponding
momentum eigenvalue k is given by Eq. (25). Similar to the
definition, Eq. (40), we can define any general flavor state,

|να〉 =
∑

k

p(k, α) |νkα〉 ⊗ |k〉 =
∑

k, j

p(k, α)U∗
α j |νkj 〉 ⊗ |k〉 .

(42)

The instantaneous density matrix of the system is

ρ(t) = |ψ(t)〉 〈ψ(t)|
=

∑

k,k′, j,l
p(k, e)p∗(k′, e)U∗

ejUele
−i(ωk

j−ωk′
l )t

×
[
|νkj 〉 〈νk′

l | ⊗ |k〉 〈k′|
]
. (43)

If we partially trace out the state with respect to the position
basis (or, momentum basis), we have the reduced density
matrix defined on Hc,

ρc(t) = Trx [ρ(t)] =
∑

x
〈x |ρ(t)|x〉

=
∑

k,k′, j,l
p(k, e)p∗(k′, e)U∗

ejUele
−i(ωk

j−ωk′
l )t |νkj 〉 〈νk′

l | δk,k′

=
∑

k, j,l

p(k, e)p∗(k, e)U∗
ejUele

−i(ωk
j−ωk

l )t |νkj 〉 〈νkl |

=
∑

k, j,l

|p(k, e)|2W
⌊

t
δt

⌋

k |νke 〉 〈νke |
(
W

⌊
t
δt

⌋

k

)†
, (44)

where W

⌊
t
δt

⌋

k = 〈k|W
⌊

t
δt

⌋

|k〉 = 〈k|W |k〉
⌊

t
δt

⌋

.
The expression of the oscillation probability will be mod-

ified,

∑

k

|p(k, e)|2 Pt (νe → να, k), (45)

where Pt (νe → να, k) is the probability, we used in the
previous sections, when neutrino selects only one momentum
eigenstate.

The above analysis will be the same for any α other
than e. When p(k, e) = p(k, α) = δk,k0 , ρc(t) =

W

⌊
t
δt

⌋

k0
|νk0
e 〉 〈νk0

e |
(
W

⌊
t
δt

⌋

k0

)†
, then the amount of entangle-

ment between position space and internal degrees (spin-
space) is always zero, as the partial traced state is pure. Here
we will use the measure of the entanglement entropy

Se(t) = −Tr
[
ρc(t) loge[ρc(t)]

]
, (46)

whereρc(t) is a 6×6 positive semi-definite unit traced matrix.

So, 0 ≤ −Tr
[
ρc(t) log6[ρc(t)]

]
≤ 1

⇒ 0 ≤ −Tr
[
ρc(t) loge[ρc(t)]

]
≤ loge(6). By considering a

Gaussian like distribution function, the probability amplitude
is defined as

p(α, k) = e− ξ
2 (k̃−k̃0)2

√∑
k e

−ξ(k̃−k̃0)2
. (47)

We assumed the same for all α = e, μ, τ as the source is
the same and propagating through free space without any
distortion.

Our momentum eigenvalues are confined in some interval,
such that k̃ ∈ [k̃0 − ε, k̃0 + ε]. ξ determine the probability
weight for the momentum distribution. It is evident from the
last expression of Eq. (44) that, increasing the value of inter-
val, means ε value will increase the corresponding entangle-
ment entropy. In this sense, entanglement entropy can be used
as a measure of the neutrino wave packet span in momentum
space. Larger and smaller entropy implies larger span and
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Fig. 3 Entropy as a measure of the entanglement between spin and
space degrees of freedom, during neutrino oscillation, simulated as a
function of the number of DTQW steps. With increase in the number of
steps we can see that the entanglement entropy values reach a saturation
level

smaller span in momentum space, respectively. The wave
function description in lattice space can be obtained by the
Fourier transformation in momentum space, Eq. (32), and the
span in position space will be opposite to the span in momen-
tum space. So, larger entanglement means less uncertainty
in measuring instantaneous position, and a more particle-like
(localized entity) nature.

We would like to point out that the “delocalization of
the neutrino states” discussed in the literature [39,40], is
related to the undetectability of the oscillation profile, when
the oscillation wavelength (which is directly proportional to
the central momentum of the wave packet, Li j

osc = 4πk0
	m2

i j
) is

smaller than the spread of the neutrino wave packet in posi-
tion space. But in our case, we show the relation of entan-
glement between spin and space with the amount of wave
packet spreading or delocalization. This wave packet spread
in position space is a property of the spatial distribution of
the neutrino source wave function and this is uncorrelated
with the neutrino oscillation wavelength.

In Fig. 3, we have plotted the entanglement entropy as
a function of walk steps, for different value of parameter
ε = 0.02, 0.05, 0.15 with the interval in k̃ = 0.001. For the
numerical simulation, k̃0 = 0.01 rad, ξ = 100 has been used.

From numerical simulations it is observed that for a large
number of steps the measure of entanglement is almost satu-
rating to a fixed value and with increase in ε value the entan-
glement entropy saturates faster at higher value. This is a
sign of the constant coupling between position space and
internal degrees of freedom. For a time varying coupling in
the Hamiltonian, we can expect a deviation from saturation.

6.2 Correlation between position space and particular flavor

The spin part of the α-flavor neutrino can be defined by trac-
ing out the momentum part;
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Fig. 4 Correlation of a particular neutrino flavor and position space as
a function of the number of walk steps. The mean correlation values for
all flavors are almost identical to one another

Trk
[ |να〉 〈να| ] =

∑

k

|p(α, k)|2 |νkα〉 〈νkα|

=
∑

k,m,n

|p(α, k)|2 U∗
αm |νkm〉 〈νkn |Uαn (48)

is a mixed state in general. Hence, from Eq. (43), considering
the projection of Trk

[ |να〉 〈να| ], on the instantaneous state
and tracing out the spin part will give a reduced density matrix
corresponding to the α-flavor neutrino state,

ρα(t) = Trc

[( ∑

k

|p(α, k)|2 |νkα〉 〈νkα| ⊗
∑

k′
|k′〉 〈k′|

)
ρ(t)

]

=
∑

k′,k′′

[ ∑

k,m,n

{
|p(α, k)|2 p(k′, e)p∗(k′′, e)

}

×
{
U∗
enUemU

∗
αmUαn

}

× 〈νk′′
m |νkm〉 〈νkn |νk

′
n 〉 e−i(ωk′

n −ωk′′
m )t

]
⊗ |k′〉 〈k′′| . (49)

The entropy measure,

Sα(t) := −Trk
[
ρα(t) loge ρα(t)

]
, (50)

captures a correlation between the α-flavor and position
space (or momentum space). In Eq. (49) we are not tak-
ing the trace over the whole coin space, we are projecting
on a mixed state

∑
k |p(α, k)|2 |νkα〉 〈νkα|, so this entropy is

not actually the entanglement measure between α-flavor and
position space. However, we can claim that this entropy can
still be used as a correlation measure, particularly, to com-
paratively understand the trend of correlations of different
flavor with the position space. In Fig. 4 we show this mea-
sure of correlation when, α = e, μ, τ as a function of steps of
walk evolution when the value of ε = 0.01. In Fig. 4 we see
the increase in entropy in the beginning with increase in the
number of steps and later all the three flavors show an iden-
tical trend in decrease and increase of the entropy around the
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Fig. 5 Correlation of a neutrino flavor α = e and position space as
a function of large number of walk steps. Identical pattern is seen for
other flavors (not shown). In a significantly large time frame we can see
that the small fluctuation in correlation along the mean value does not
follow any pattern

mean value. When the same measure is considered for a very
large number of steps, shown in Fig. 5, we see fluctuations
around the mean value without any well-defined pattern in
fluctuation and these fluctuations show an identical trend for
all flavors. From this we can say that each flavor is equally
correlated with the position space during the propagation.
In Ref. [41] it is shown that the entanglement between the
coin and position space of DTQW with strongly localization
but not being localized at one node (spatial disorder walk)
is smaller when compared to the wide spread localized state
(temporal disordered walk). Therefore, from the absence of
zero correlation at any point of time we can conclude that the
neutrino flavor is not localized in position space at any given
point. However, the degree of delocalization can be varied by
changing the value of ε. A comparatively higher correlation
would mean a more widely spread wave packet.

7 Conclusion

Neutrinos are very weakly interacting particles, so if the
detectors are large in size detection of a significant number
of the neutrinos is possible. For neutrino oscillation exper-
iments various kinds of detector are used; for example, the
detector Super-Kamiokande [34] uses 50,000 tons of ultra-
pure water and Sudbury neutrino observatory (SNO) [35]
uses 1000 tonnes of ultra-pure heavy water. Simulating neu-
trino oscillation and other high energy phenomena in a low
energy experimental set-up gives access to intricate features
of the dynamics, which is not easy in a high energy set-up. In
this work we have shown that the three flavor neutrino oscil-
lation obtained from this massive experimental set-up can be
simulated using a DTQW system with a set of walk evolu-
tion parameters. Using DTQW, short range oscillations and
long range oscillations have been obtained by simply vary-
ing the number of steps of the walk. DTQW has been exper-
imentally implemented using trapped ions [17], cold atoms

[18], NMR [19], and photons [20]; therefore, neutrino oscil-
lations can be simulated in any of these systems. In addition
to simulating neutrino oscillation, our work indicates that the
quantum walk can play an important role in simulating and
understanding dynamics of various other physical processes
in nature. With these simulations mapping to real experi-
mental measurements gives us access to exploring quantum
correlations like entanglement and understanding the neu-
trino physics and high energy physics in general from the
quantum information perspective. Here we introduced a cor-
relation measure between flavor and position space that will
give information as regards the spatial degrees of freedom of
the neutrino, by detection of a particular flavor. Simulating a
high energy quantum dynamics in a low energy quantum sys-
tem and understanding physical phenomena from the quan-
tum information theory perspective is an important topic of
interest in contemporary research. A preprint of this paper,
arXiv:1604.04233 [38] has already motivated research in this
direction by considering the extension towards simulation of
the neutrino oscillation in matter using DTQW [42] without
overlapping with the results shown in this paper.
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