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Non-Markovian channel from the reduced dynamics of a coin in a quantum walk
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The quantum channels with memory, known as non-Markovian channels, are of crucial importance for a
realistic description of a variety of physical systems, and pave ways for new methods of decoherence control by
manipulating the properties of an environment such as its frequency spectrum. In this work, the reduced dynamics
of a coin in a discrete-time quantum walk is characterized as a non-Markovian quantum channel. A general
formalism is sketched to extract the Kraus operators for a 7-step quantum walk. Non-Markovianity, in the sense of
P indivisibility of the reduced coin dynamics, is inferred from the nonmonotonous behavior of distinguishability
of two orthogonal states subjected to it. Furthermore, we study various quantum information-theoretic quantities
of a qubit under the action of this channel, putting in perspective the role such channels can play in various

quantum information processing tasks.
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I. INTRODUCTION

The study of open quantum systems with memory has
attracted a lot of attention over the last few years, since such
systems describe a plethora of physical phenomena and also
provide new ways to control various quantum features by
engineering the system-environment interactions [1,2]. Sev-
eral investigations on the role of structured environments and
non-Markovianity in entanglement generation [3], quantum
teleportation [4], key distribution [5], quantum metrology [6],
and quantum biology [7] have suggested the advantage of
non-Markovian quantum channels over Markovian ones.

The quantum walk (QW) was conceived as a general-
ization of classical random walks with an anticipation of
its potential in modeling the dynamics particle in the quan-
tum realm [8—13]. QWSs describe the coherent evolution of
a quantum particle, where the coin space is coupled to the
position space which in principle can be treated as an external
environment. One-dimensional QWs involve a walker free
to move in either direction along a straight line such that
the direction for each step is decided by the outcome of a
coin toss. However, it differs from its classical counterpart
in the sense that the probability distribution of the quantum
particle spreads quadratically faster in position space than
the classical random walk due to interference. This feature
makes the QW an ideal candidate for development of quantum
algorithms such as quantum search algorithms [14,15]. The
ability to engineer the dynamics of the QWs has also al-
lowed us to simulate and study quantum correlations [16—18],
quantum-to-classical transition [19,20], memory effects and
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disorder [21], relativistic quantum effects [22], and quan-
tum games [23]. Experimental implementation of QWs has
also been realized in various physical systems, viz., in cold
atoms [24,25] and photonic systems [26-32]. Studies have
reported the circuit-based implementation of QWs [33-35]. A
scheme for implementing QWSs in Bose-Einstein condensates
was presented in Ref. [36] and was recently implemented
in momentum space [37]. Possible applications of QWs in
understanding the dynamics in biological systems have been
reported in various works [38—40], thus making QWs a topic
of practical interest.

The QW can be discrete or continuous in time, accord-
ingly known as a discrete-time quantum walk (DTQW) and
continuous-time quantum walk (CTQW). In this work, we
confine ourselves to the former case. The DTQW was stud-
ied from the perspective of various facets of non-Markovian
evolution, such as the disambiguation of contributions to non-
Markovian backflow as well as the transition from quantum
to classical random walks [41]. The non-Markovian nature of
coin dynamics in DTQWSs can be brought out by tracing over
the position space [42]. Henceforth, we use the term quantum
walk noise (QWN) to describe the reduced dynamics on the
coin space. In this work, we quantify this by developing the
Kraus operators for the QWN, thereby characterizing the QW
channel. The QWN was studied [41] in conjunction with a
random telegraph noise (RTN) [43,44]. The P indivisibility
[45-47] of the QWN as well as the RTN suggested that the
intermediate map of the full evolution could be not completely
positive (NCP). Also, nonmonotonic behavior under trace dis-
tance was indicated. This called for a careful consideration of
the application of such non-Markovian noise channels to the
DTQW protocol. A suggestion offered in Ref. [41] was that
in contrast to the conventional application of the (Markovian)
noise channel [19,20] in the form of appropriate Kraus oper-
ators [2], after each application of the walk operation, in the
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present non-Markovian scenario, the Kraus operators are ap-
plied once after r QW steps. This notion was implemented nu-
merically. Here, making use of the developed Kraus operators
of the QW channel, we quantify this notion. It also serves the
purpose of highlighting the implementation of non-Markovian
noise channels to various QW protocols. We further character-
ize the QW channel by studying various information-theoretic
processes on it. Specifically, the interplay of purity of the
qubit state with the channel parameter as well as the state
parameter is investigated. Furthermore, the Holevo quantity,
which characterizes the information about an input state that
can be retrieved from the output of the channel, is studied.

The paper is organized as follows: In Sec. II, the reduced
coin dynamics is studied, sketching the formalism to extract
the Kraus operators for a ¢-step walk. Section III is devoted
to a detailed investigation of various properties of the QW
channel, such as its non-Markovian nature in the sense of P
indivisibility, the purity of states subjected to this channel, and
the Holevo quantity. The conclusion of this work is presented
in Sec. IV.

II. REDUCED DYNAMICS OF A COIN

Let the initial states of coin and walker be [y.) and [v/,,),
respectively. The unitary operator W = §(C ® 1), where §
and C are the shift and coin operators, respectively, governs
the time evolution of the combined state [) ® |v,). The
state after ¢ steps is given by [48]

lv @) =W (1Y) ® [¥,) or
p(t) = W (p. ® pp) (W' (1)
Here, p(t) =YYW @), pp= V) (¥,l, and p, =

|V} (.| are the corresponding density matrices. Furthermore,
the coin and shift operators are given by

A cos 6 —isin6
C=\_isi 0 cosf )’
1 S1n (2)
S=1M S +1) (U ® Sk
The  operators S = D ez X — 1) (x] and  Si =

Y ez X+ 1) (x|, are the left and right shift operators,
respectively. The total unitary operator for ¢ steps becomes

W =[SC 1]
M) (M @S+ 1) (L@ 8)(C 1)
1) (M C @S+ 11) (LIC ® Skl
=16, ®8.+C, @8%=[P+0r.
Here, P =C’T ®38.,0= (Afi ® Sk, (Af¢ =1 (TIC, and CA‘¢ =

11) (J|C. The right-hand side can be simplified using the
binomial expansion [49]

P+0) =) (Z)PkQ’—" +y (Z)Dk(Q, PO+ 3)
k=0

k=0

[
[
[
[

The second term arises due to the noncommutative nature of
P and Q, and can be simplified using the recurrence relation,

Dii1(0, Py =10, PX1+ PD (0, P) + [0, D (O, P)],
with  Dy(0, P) = 0. )

Thus, the quantity Dk+l (Q, P) vanishes if [Q, P] = 0. From
the definition of P and Q it follows that

[0,P1=0P—-PO=C,C,®1—-CC @1, (5)
Using the definition of C (), it follows that

—sin%0 —isin90056>

isinf cos O

(6)

0. P1 = ( in6
and is a zero matrix only for 6 = 0, &, and 27, which corre-
spond to the coin operator being identity.

Further simplification of the first term in Eq. (3) reads

t

£\ A A A PP )
> (k)P"Q”‘ = <k) (€ @8 7H(C, ® Sp)f

k=0 k
I\ A A A ~
= Z <k> Gt el @ 8748 (7)
k

For a walk of ¢ steps, symmetric about x = 0, the number
of values a position can take is 2¢ 4 1. Let the initial states of
coin and walker be |/.) = a|1) + b|{) (with |a]> + |b|> = 1)
and [v,) = |x = 0), respectively. The possible position states
are [x = —t),..., |x =t). We represent these states in com-
putational basisas (1 00...)7,...,(00...1)7, respectively.

With this setting, we trace over the position degrees of
freedom, using the notation |x = u) = |x, ), and obtain

t

pet) =Y (W (pe ® 1Y) (¥, DO 1)

n=—t
t
=Y KupcK]. (8)
n=—t

The Kraus operators are identified as

Ku = <x14|Wt|1/fp> = (xul(P + Q)’II//,Q

=3 (,i) (PO )
k=0

t
t A A AL
+> (k> (x| D0, PYO 1w, )
k=0
with u = —¢,...,t. In order to simplify the first term, we

assume |v,) = |0); i.e., the walker starts at x = 0, such that
1

2

k=0
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TABLE I. Kraus operators for the reduced coin dynamics for some steps of a symmetric QW. Here, 6 is the coin parameter defined in

Eq. (2).

Steps

Kraus operators

0 0 cos 6
1 K, = K =
—isinf cosf 0

—isin 9)

0 0 —sin’ 6 —isin6 cos6 cos?f  —isin@ cosh
2 K, = . Ko = . . 2 K, =
—icosfsin® cos?6 —isinf cos6 —sin“ 0 0 0
0 0 —cosfsin’6 —icos?6sinf
3 Kay=| . , . 3 Kao=| . . -
—icos“@sinf cos’ 6 —icos“Osinf +isin°@ —2cos6sin” 6
© —2cosfsin’f —icos2Osinb +isin®6 © cos’d —icos’*@siné
"\ Sicos20sin6 —cos 0 sin® 0 T 0 0
0 0 —cos? 0 sin® 6 —icos®6sind
4 K_4 = . K—2 = . .3 :
—icos’0sin® cos*O —icos’Osinf + 2icosfsin’0  —3cos? O sin’ 6

X —2cos?6sin® 0 + sin* 6
0 —icos®0sinf + 2icosf sin® 6

—3cos?0sin’ 6
K, = )
—icos®6sinf

—cos?@sin’ 0

—2cos? 6 sin® 0 + sin* 6
—icos’ 6 sinf + 2icos § sin’ 6‘) (0054 6
Y=

—icos’ 0 sinf + 2icos 6 sin’ 9)

—icos’0sinf
0 0

Use has been made of (x,,[8¥S%7%|0) = 8,14, (see the Ap-
pendix). The constraints k = (+ — u)/2 and k € {0, 1,2, ...}
demand that u and r have same parity; i.e., for ¢ even (odd), u
is even (odd).

For a one-step walk, =1
From Eq. (4), D((P,0)=0,

7 A A -
WCT C,* ,leading to

0 0 cosf —isind
Kl:(—isin@ cos@)’ Kl:( 0 0 >

(1)

implies
and we

nw=-—1,1.
have K, =

These operators satisfy the completeness condition KLK,I +
KIT K, = 1. Table I lists the Kraus operators for the reduced
coin dynamics for a few steps of a symmetric QW. One infers
the following:

(1) K_; = MIK;], where M[K;] is the minor of the matrix

K.

(2) For coin parameter 0 =n/2, Ky, =0, n=
1,2,3..., and Ky =41, with 1 being the identity
matrix.

The Kraus operators K; constitute a map J connecting the
input state p.(0) to output pc(r). Let pc(0) = [1.(0)) (¥c(0)]
with |¥.(0)) =a|1) + b|]), and we have
lal>  ab*

pc(0) = (a*b |b|2

) — pc(t) = [ﬂt:npc(o)

q:(0) >
. 12
1 —p(0) (12

Here, p;(0) is the probability of obtaining |1) in a ¢-step
walk. The form of p,(6) and ¢,(0) for some steps is given

’ /(0)
= K, p. (0K = <p
L KO = o)

below:
p1(0) = lacosO — bsinf|?
= 1[1 + (Ja]* — |b|*) cos(20)

+ i(ab* — a*b) sin(20)],

p2(0) = 1[1 + 2[al* + (la]* — |b|*) cos(40)
+ i(ab* — a*b)sin(46)],

p3(0) = 1616 + 4lal* + 5(laf* — |b|*) cos(26)
—2(la* = |b|*) cos(40) + 3(lal* — |b*) cos(60)
+ 3i(ab® — a*b)sin(20) — 2i(ab* — a*b) sin(40)
+ 3i(ab* — a*b)sin(60)],

(13)
and

q10) =0,

¢>(0) = sin® @[ab* cos® O + a*bsin® O
+i(la)* = |b|*)sin 6 cos 6],

q3(0) = cos 8 sin® O[(a*b + ab*) cos O

+ (ab* — a*b) cos(30) + i(|al® — |b*) sin(36))].

(14)

The probabilities p,(6) are plotted in Figs. 1(a) and 1(b)
when |1) = |0), with respect to the coin parameter 6. The
asymmetric behavior of the probabilities, with respect to even
and odd numbers of steps, is observed at 6 = m /2, where
probabilities converge to one (zero) for even (odd) numbers of
steps. The value of the coin parameter 6 = 7 /2 corresponds to
the coin operator, Eq. (2), C = —io,, where o, is the Pauli op-
erator. This flips that state |0) (|1)) to |1) (]O)), thus returning
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FIG. 1. Depicting probability p, [see Eq. (12)] of obtaining |0)
in a t-step QW (a, b) with respect to the coin parameter ¢ with
initial state |¢.) = |0), and (c, d) with respect to the state parameter
& in with initial state |v.) = cos(6/2) |0) + sin(§/2)|1), and coin
parameter 6 = 1 /6.

probability one and zero of the initial state |0) after every even
and odd step, respectively. For 6 # 7 /2 and # 0 interference
in position space comes into play modifying the state and we
see its effect on probability. In Figs. 1(c) and 1(d), the effect

of the change in initial state is shown. The curve will flatten
up (not shown but intuitive) around one for an even number
of steps and around zero for an odd number of steps. There
are other formulations of QW, like the split-step QW, where
one breaks each step of the walk into two half-step evolutions
described by the unitary Wy, =8, (C @ 1)S_(C @ 1) = W?
[50]. Here, W is the unitary operator for the standard QW,
defined in Eq. (1). The Kraus operators for some steps of the
split-step QW are given in Table II.

III. SOME PROPERTIES OF THE QW CHANNEL

In this section, we characterize the non-Markovian QW
channel comprising the reduced coin dynamics. We also study
some quantum information-theoretic quantities on it.

A. Non-Markovian dynamics

Non-Markovianity is a multifaceted phenomenon. Here,
we restrict ourselves to the P-indivisibility form of non-
Markovianity, which, for a map ®, = &, o (# > 0), means that
the intermediate map @, ; = <I>,CI>S‘1, with t > s > 0, ceases
to be positive [46]. A more general condition is when &,
is NCP, leading to CP-indivisible form of non-Markovian
dynamics. The P-indivisible dynamics can be probed by using
some state distinguishability measure, such as trace distance,
denoted by D. The trace distance of states p and o is de-
fined as D(p,0) = %Zl [Xi|, where X; are the eigenvalues
of matrix p — 0. A departure from the monotonic behavior
of D(A(p), A(o)) implies P indivisibility of the map A, and
hence non-Markovian dynamics. Consider two orthogonal
states po(t = 0) = ]0)(0] and p;(t = 0) = |1)(1|, subjected to
the QW channel for a specific number of steps. For a one-step
walk, we have

1
Dlpo(r=1). p(n=1)) = 7 D Ihl = lcos20)].  (15)

Here, A; are the eigenvalues of pp(n = 1) — p;(n = 1) and

po(n=1)= D KupoKj.

n=1,3
pn=1= )" K.piK. (16)
n=1,3

Similarly, we can compute the trace distance between pg(n)
and p;(n) for an arbitrary n number of steps, as depicted in
Fig. 2(a). The fluctuating nature of the curves clearly brings
out the P indivisibility of the non-Markovian QW channel
comprising the reduced coin dynamics. The non-Markovian
nature of the reduced dynamics of the coin can be attributed to
the entanglement between coin and walker degrees of freedom
and tracing over the subspace of the latter.

It is important to highlight the fact that for the case of non-
Markovian processes, such as the P-indivisible case studied
here, the concatenation of a one-step map » times is not equiv-
alent to operating with an n-step map, that is, F; F; - - - F; #
F. (Fig. 3). This becomes clear when one computes the
trace distance between |0) and |1), which turns out to be a
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TABLE II. Kraus operators for the reduced coin dynamics for some steps in a split-step quantum walk.

0 0

Steps Kraus operators
cos?(0) —icos(6)sin(6) — sin2(9) —icos(0)sin()
! ko= ( 0 0 ) Ko = (—icos(e)sin(e) —sin®(9) )
0 0
K= <—icos(9)sin(9) 0032(9)>
—cos2(9) sin’(0) —icos3(0)sin(0) cos*(0) —icos?(0)sin(6)
2 K= (—;i(s cos(20) — 1)sin(20) -3 cosz(Q)Sin2(9)> K= < 0 0 )
sin*(0) — 2cos*(0)sin®(0)  —i(3cos(20) — 1)sin(26) 0 0
Ko = (—;i@ cos(20) — 1)sin(20)  sin*(0) —2cos2(9)sin2(0)> K = (—icos3(9)sin(9) cos4(9))
—3cos?(0)sin*(0)  —+i(3cos(20) — 1)sin(20)
K = ( —icos>(0)sin(9) —cos?(9) sin®(0) )
—5cos*(0)sin*(0)  —1icos®(0)(5cos(20) — 3)sin(d)
3 K= ( —icos®(0)sin(6) —cos*(9) sin®(0) )
5 (1 = 5c0s(260))sin*(26) —Licos*(0)(5cos(20) — 3)sin(6)
ko= (—1'6i(sin(20) — 45in(46) + 5sin(60)) +(1 = 5c0s(26)) sin?(26) )
(cos(’(H)
K_| =

—icos’(#)sin(@ ))

(4 cos(20) + 5 cos(46) + 3) sin’(9)

icos®(0)(5cos(26) — 3)sin(6)

_1
2

Ko= <—1'6i(sin(20) — 4sin(46) + 5sin(66))
0 0
K] = . .
(—lcos5(49)sm(9) cosﬁ(e))
1(1 = 5cos(26))sin*(26)
K = (

—I—'Gi(sin(20) — 45in(460) + 5sin(60))
—1(4c0s(20) + 5cos(46) + 3) sin2(9)>

—Li(sin(20) — 4sin(46) 4 5sin(66))

$(1 —5cos(26)) sin*(26) )

—cos*(9) sin’(0) —icos’(0)sin(0)
k= —licos*(0)(5cos(20) — 3)sin(@)  —5cos*(9)sin*(F)
monotonically decreasing function in the former case: Here,

DI(FFr -+ Fo)po, (FiFi -+ F)pil = | cos(20)[". (17)

Unless 260 =0, w, 2w, we have 0 < |cos(20)] < 1; there-
fore, | cos(20)|" converges to zero as n increases, as shown
in Fig. 2(c).

Discerning multiple non-Markovian effects. Quantum
walks have been studied in the presence of various noise
models, both Markovian and non-Markovian [21,41]. It is
important to mention here that the inferences drawn about the
non-Markovian behavior in such cases must take into account
the inherent non-Markovian nature of the reduced coin dy-
namics. To illustrate this point, let us subject the reduced coin
state to the RTN channel, £ : p(t) = £p(0), described by the
following Kraus operators:

Rlzwl#]l, Rz:,l#ﬂz.

(18)

a2
A(t) =e™""| cos (yt 4— -1 )
14
1 . a?
+—sin (1[4 —1) | 9
4% 1 1

The RTN describes a dephasing noise studied in Ref. [43],
with the autocorrelation function, represented by the stochas-
tic variable £, given by (£(1)&(s)) = a’e™""~*I/*. Here, a
signifies the strength of the system-environment coupling,
and y = % describes the fluctuation rate of the RTN. The
channel describes a Markovian (non-Markovian) evolution if
Z—zz < 0.25 (}‘f—22 > 0.25). Next, we define the composition of
RTN and QW channels as [£ F];—, for n steps, such that

pe(t =n) = [EFli=npc(0) = [E[F pc(O)]]i=n,

where the map F is defined in Eq. (12). Figure 4 depicts
the behavior of trace distance under this composite map,
where RTN is operated both in Markovian and non-Markovian

(20)
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FIG. 2. (a) Trace distance between orthogonal states |0) and |1)
subjected to coin dynamics as a function of coin parameter 6 and
the number of steps. The nth step is realized by applying F,, de-
fined in Eq. (12). (b) Trace distance between |0) and |1) obtained
by subjecting them to an n concatenation of F;. (c) We compare
(a) and (b) for & = 7 /6, with blue (solid) and red (dashed) curves
corresponding to a single n-step operation and an n-concatenation
operation, respectively.

r 1
A F A

1 1

FIG. 3. The n-step reduced coin operation obtained in two in-
equivalent ways. The map F, is defined in Eq. (12).

regimes. The nonmonotonic behavior of trace distance in the
Markovian regime of the RTN channel is a consequence of the
inherent non-Markovian nature of the reduced coin dynamics.

B. Purity and mixedness under QW channel

The purity of a state quantifies the degree of disorder or
mixedness in it. The system-environment interaction is often
accompanied with a loss of coherence in the state, leading to
mixedness. Thus, purity and mixedness are complementary
quantities connected by the following relation [51]:

d
M = —— (1 =Trlp*). @n

Here, M is the mixedness and Tr[,oz] is the purity of the
d-dimensional state p. Figures 5(a) and 5(b) depict the purity
of the output state of the QW channel when the input state
is cos(6/2)10) + sin(§/2) |1). For both even and odd num-
bers of steps, the system is found to be in a pure state for
0 = 0, w /2, =. The same quantity is depicted in Figs. 5(c) and
5(d), with respect to the coin parameter 6, for state parameter
s =m/4.

1.0+ ]
\ 6=r/6
__ 08} 1
-03‘_ \ “"‘_f-—-""-"'l'!%\
Q 0.6F \ w‘,__u ]
= Caal
= x“
S 0.47 - ]
% 0 N
0.2r ]
0.07‘ L L L I L i |

FIG. 4. Trace-distance between states EF(]0)(0|) and
EF(|1)(1]), where the composite map EF is defined in Eq. (20).
The blue (dashed) and red (dotted) curves correspond to the
cases when RTN is operated in Markovian and non-Markovian
regimes, respectively. The black curve depict the case in absence
of RTN channel. The unexpected nonmonotonous behavior of trace
distance in the Markovian regime of RTN is due to the inherent
non-Markovian nature of the dynamics.
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T

o NI
(o)}

—
Nas

FIG. 5. (a), (b) Depicting the trace of the reduced coin state for a
t-step QW as a function of the coin parameter 6 and state parameter
& with with input state cos(6/2) |0) 4 sin(§/2) |1). In (a) and (b) the
blue, red, gray, and green surfaces correspond to t = 1, 3,5, 7, and
t =2,4,6,8, respectively. The same quantity is plotted in (c) and
(d) with respect to 6, and § = 7 /4.

0 n ;T 37 25

FIG. 6. Maximum of the Holevo quantity x as defined in
Eq. (22). The input state is taken to be p = p;p; + p2p2, With
pi=40)(0+ 311)(1] and py = L+)(+] + 3|=)(—|. The maxi-
mization is carried over all 0 < p; < 1 and 0 < p; < 1, constrained
topr+p=1

C. Holevo quantity for QW channel

When a state is subjected to a noise channel, its quantum
features get affected, usually manifested in the form of deco-
herence and dissipation. The amount of information about the
input state that can be retrieved from the output state is known
as accessible information. The accessible information is upper
bounded by the Holevo quantity [52] defined as

X = S(ijf(m)) - ZPjS(-/T(Pj))- (22)
j J

J

Here, p; is the set of input states with probability p;, describ-
ing the ensemble {p;, p;}. The map F in our case represents
the reduced coin dynamics, and is defined in Eq. (12). Let
us consider a case when the input state is described by
the ensemble {p;p1, p202}, with p; = i|0>(0| + %|1)(1| and
p2 = t1+){(+| + 2|—)(—|. For different numbers of steps, the
Holevo quantity, maximized over 0 < p; < 1 and 0 < py <
1, with p; + p» = 1, is depicted in Fig. 6. One infers that the
Holevo quantity is suppressed for an odd number of steps.

IV. CONCLUSION

Recent studies have reported the constructive role of
non-Markovian quantum channels over Markovian ones, in
enhancing various quantum features of the system. We have
characterized the reduced coin dynamics in DTQWs as a non-
Markovian quantum channel by analytically computing the
Kraus operators for a ¢-step walk. The non-Markovianity is in-
ferred from the P divisibility, reflected by the nonmonotonous
behavior of the trace distance between two orthogonal states
subjected to the channel. Subtleties arising due to concatena-
tion of a one-step map for r number of steps are highlighted.
This could be envisaged to have an impact on the study of
memory processes on QW evolutions. The impact of a noisy

062209-7



NAIKOO, BANERJEE, AND CHANDRASHEKAR

PHYSICAL REVIEW A 102, 062209 (2020)

channel on the purity of a quantum state is studied with respect
to the number of steps as well as the channel (coin) parameter.
The amount of information about an input state which can
be retrieved from the output is bounded by Holevo quantity,
and is shown to exhibit different behavior for even and odd
numbers of steps. The QW channels, introduced here, add to
the important class of non-Markovian channels which help in
developing characterization methods for open quantum sys-
tems and strategies for various quantum information tasks.
The feasibility of experimental implementation of DTQWSs in
various quantum systems can lead the way towards practical
realization of non-Markovian quantum channels presented in
this work.
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APPENDIX: CALCULATION OF (x = p|848%|x = v)

From the definition,

t t
Se=> k=Dl and 8= |x+1)x

x=—t x=—t
(A1)
Note that Y'_  Jx—1)(x|=Y""" | I)x+1].
propose
-1 k 1—k
[slez[ > |x><x+1|} = > x+k. (A2
x=—t—1 x=—t—1

We prove this by induction. The cases with k = 0 and k = 1
trivially hold. Let us assume the results holds for k = p, so

that

t—1 Pl
L > e+ 1|]
=—t—1

- Li_l ) (x + 1|][ i

x=—t—1

t—1 t—p

=[ > |x>(x+1l][ >
x=—1—1

y=—t—1

-P
= Z Z xX)(x + 1)y + pl

x=—t—1y=—t—1

p
) (x + 1|:|

|)’>(Y+P|:|

= Z Z X+ pl Sy
x=—t—1y=—t—1
t—(p+1)

= > Wx+p+1l (A3)
X=—t—p

The upper limit of x is restrictedtot — (p + 1), since y = x +
1; therefore, forx >t — (p + 1) we have y > ¢ — p, which is
greater than the original limit of y. Similarly, one can show

t ! t—(k—1)
[SR]k=[Z|x+1><x|} = ) k.

X=—t xX=—t

(A4)

Using Egs. (A3) and (A4), we have
(= ulSES v = v)

t—k
=@=pul| Y |x><x+k|}
=—r—1
t—(k—1)
x [ > |y+t—k><y|]|x=v>

y=—t

t—k t—(k—1)

Z Z Bu.x(x+k|y+t_k>5yv

x=—t—1 y=—t

= (u+klv+1t—k).

(A5)

Therefore, this quantity is nonzero for k = (t + v — u)/2.
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