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Abstract
We seek the optimal strategy to infer the width a of an infinite potential well 
by performing measurements on the particle(s) contained in the well. In 
particular, we address quantum estimation theory as the proper framework to 
formulate the problem and to determine the optimal quantum measurement, 
as well as to evaluate the ultimate bounds to precision. Our results show that 
in a static framework the best strategy is to measure position on a delocalized 
particle, corresponding to a width-independent quantum signal-to-noise 
ratio (QSNR), which increases with delocalisation. Upon considering time-
evolution inside the well, we find that QSNR increases with time as t2 (at least 
for small t). On the other hand, it decreases with a and thus time-evolution is 
a metrological resource only when the width is not too large compared to the 
available time evolution. Finally, we consider entangled particles in the well 
and observe super-additivity of the QSNR: it is the sum of the single-particle 
QSNRs, plus a positive definite term, which depends on their preparation and 
may increase with the number of entangled particles. Overall, entanglement 
represents a resource for the precise characterization of potential wells.
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1.  Introduction

In undergraduate quantum mechanics courses, the potential wells are usually the first exam-
ples used to theoretically illustrate quantum effects due to confinement and interference [1–8]. 
The particle in a box is also the subject of basic experiments in the undergraduate physi-
cal chemistry laboratory [9–11]. On the other hand, quantum well (QW) potentials are not 
just an academic exercise. Rather, QWs provide relevant approximate models used in several 
branches of physics, optoelectronics and chemistry, since they often provide a surprisingly 
accurate description of different physical systems. At the same time, QWs may be used to 
illustrate potential drawbacks in canonical standard quantization [12–14].

In physical systems where short range forces are dominant, e.g. nuclei, QW potentials help 
to illustrate several phenomena at low energy [15]. QWs are also employed to describe the 
confinement of electrons inside crystals [16], e.g. quantum wells, wires and dots corresponding 
to confinement in one, two or three dimensions, respectively [17–19]. Those structures may be 
created by inserting in a given semiconductor a nano sized impurity made of a different one. 
Quantum dots, in particular, received much attention, because of their applications in nano-
electronics. The size of the quantum dot is a crucial parameter, since it determines the optical 
properties of the crystal; the smaller the dots, the larger is the intensity of the emitted light. As 
a consequence, the precise knowledge of the dimensions of the potential well, in particular of 
its width, is a crucial information for the development of effective light sources.

In this paper, we consider a toy problem with potential applications in the fields mentioned 
above. We consider an infinite QW in one dimension and seek for the optimal strategy to infer 
its width, denoted by a, by using quantum probes [20–30], i.e performing measurement on 
the particles subjected to the QW potential. The analogue problem in N dimensions may be 
then reduced to N problems in one dimension. In particular, we address quantum estimation 
theory as the proper framework where to formulate the problem, to look for the most suit-
able quantum measurement, and to evaluate the ultimate quantum bounds to precision. We 
will consider one or more particles in a QW, and will look for the optimal strategy to infer its 
width. In other words, we are looking for the best initial preparation, the optimal interaction 
time, and the more informative measurement, overall providing the highest precision in the 
determination of the width of the QW. In this optimization procedure, the figures of merit is 
the so-called quantum Fisher information, which provides a quantitative measure of the infor-
mation about a parameter, which may be extracted by measurements performed on a family 
of quantum states.

Our results show that in a static framework, position measurement is the optimal one for 
any initial state, i.e. its Fisher information is equal to the quantum Fisher information. In other 
words, position data provides us with all the available information about the width of well. 
Moreover, we found that before making a measurement it may be convenient to wait for a 
certain amount of time, because the quantum Fisher information increase with the time evo
lution as t2, at least for small t. Finally, we found that entanglement represents a resource, i.e. 
precision may be enhanced using multi-particle entangled states in the well.

The paper is structured as follows. In section 2, we briefly review the infinite square well 
quantum problem in one dimension and provide an introduction to the ideas and the meth-
ods of quantum estimation theory, also evaluating the Fisher information for two relevant 
observables: position and energy. In section 3, we focus to static situations and evaluate the 
quantum Fisher information for different families of states, showing that delocalisation is the 
key feature to gain information about the width of the well. In section 4, we take into account 
time evolution and evaluate the quantum Fisher information for some class of states. In sec-
tion 5, we address the use of N-particle probe to infer the width of the QW and describes how 
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entangled probes may be used to improve precision at fixed number of particles. Section 6 
closes the paper by some concluding remarks.

2.  Preliminary concepts

In order to introduce the problem and establish notation, let us first review the infinite square 
well potential problem in non-relativistic quantum mechanics (for the relativistic case, see 
e.g. [31]), i.e. let us find the eigenvalues and the eigenfunctions of the one-dimensional 

Hamiltonian H = p2

2m + V(x), where the potential, of width a, is shown in figure 1, i.e.

V(x) =
{
∞ for x < 0 and x > a
0 for 0 � x � a.� (1)

We look for the eigenvalues and the eigenfunctions of the Hamiltonian H by solving the 
correspondent eigenvalue equation  in the position basis, i.e. solving the Schrodinger equa-
tion  − 1

2∂
2
xψ(x) = [E − V(x)]ψ(x) for the wave-function ψ(x), where we use natural unit 

� = 1, and assume unit mass m  =  1 for the particle. The solution is straightforward upon 
dividing the space into three regions (see figure 1) to see that regions I and III are forbidden 
because the potential there is infinite. The eigenfunctions |ψn〉 form a discrete and non-degen-
erate spectrum of bound states which may be written as [32, 33]

|ψn〉 =
∫ a

0
dxψn(x) |x〉,

∫ a

0
dx |ψn(x)|2 = 1,

where n ∈ N+ and

ψn(x) =

√
2
a

sin
(nπ

a
x
)

,� (2)

En =
n2π2

2a2 .� (3)

Figure 1.  The infinite square well potential, i.e. the model of a particle confined in the 
region between x  =  0 and x  =  a. Regions I and III are indeed forbidden because the 
potential is there infinite. The spectrum is discrete and non-degenerate.
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The eigenfunctions exist only in the region II, i.e. all the integrals must be done between 0 
and a, and form a complete orthonormal set. We remind that n ∈ N+, i.e. it cannot assume the 
value n  =  0, because in that case ψ0(x) = 0 and the uncertainty relations would be violated. 

The ground state has energy E1 = π2�2

2ma2 .
According to the Stone–Von Neumann theorem [34], the eigenstates of the Hamiltonian 

and the position eigenstates form two unitarily inequivalent basis. We will use both in the fol-
lowing of the paper, and write a generic state |f 〉 as

|f 〉 =
∫ a

0
dx f (x)|x〉,� (4)

=

∞∑
n=1

fn |ψn〉,� (5)

where f (x) = 〈x|f 〉, fn = 〈ψn|f 〉 and

f (x) =
∞∑

n=1

cn ψn(x)� (6)

cn =

∫ a

0
dxψn(x) f (x).� (7)

Position basis, being independent on the value of the potential width, is suitable for the evalua-
tion of the Fisher information and the signal-to-noise ratio (see the following section), whereas 
the Hamiltonian basis is of course the privileged one for time evolution. If we prepare a par-
ticle in an initial state |f0〉 =

∑
n fn |ψn〉, the evolved state at time t is given by

|f 〉 = Ut|f0〉 ≡ exp{−iHt}|f0〉

=
∑

n

e−iEntfn |ψn〉.� (8)

2.1.  Quantum estimation theory

It often happens in science that a quantity of interest is not accessible directly. Perhaps, the 
most prominent example in physics is that of a field, either gravitational, magnetic, or elec-
tric. As a matter of fact, no device is actually measuring, e.g. the magnetic field. Rather, one 
measures the effect of the field on a moving charge, say measuring its acceleration, deflection 
or displacement, and then estimate the field by suitably processing the data observed for the 
measured quantity.

The chosen measurement and the data processing are together referred to as the infer-
ence strategy for the parameter of interest ξ [35–38]. After a certain observable X has been 
chosen, the available data x = (x1, x2, ....., xM) is a set of outcomes from M repeated measure-
ments of X, i.e. a sample from the distribution p(x|ξ) = ΠM

k=1p(xk|ξ), which itself depends on 
the parameter that has to be estimated. The estimated value for ξ is the average value of an 
estimator

ξ̄ =

∫
dx p(x|ξ) ξ̂(x),� (9)
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i.e. a map ξ̂ ≡ ξ̂(x) from the space of observations to the space of the parameters. The overall 
precision of the estimation procedure is quantified by the variance of ξ̂, i.e.

Var ξ̂ =

∫
dx p(x|ξ) [ξ(x)− ξ̄]2.� (10)

The variance of any unbiased estimator (i.e. an estimator for which ξ̄ → T  in the asymptotic 
limit M � 1) for the parameter T is bounded by Cramer–Rao theorem [39–41], stating that

Var ξ̂ �
1

MF(ξ)� (11)

where F(ξ) is the Fisher information (FI)

F(ξ) =
∫

dx p(x|ξ)
[
∂ log p(x|ξ)

∂ξ

]2

,� (12)

p(x|ξ) being the single outcome probability, i.e. the probability of measuring x when the true 
value of the parameter is ξ. The FI quantifies the amount of information about the parameter 
ξ that we may extract from the measurement of X.

In a quantum mechanical setting, the conditional probability p(x|ξ) is given by the Born 
rule p(x|ξ) = Tr[Pxρξ], where ρξ is the density operator describing the (parameter-dependent) 
state of the system and Px is the projector over the eigenstate of a selfadjoint operator X corre
sponding to the eigenvalue x.

In order to write the Fisher information in a convenient form, and to maximise its value 
over the possible observables, we introduce the symmetric logarithmic derivative (SLD) Lξ , 
i.e. a selfadjoint operator satisfying the equation

Lξρξ + ρξLξ

2
=

∂ρξ
∂ξ

.� (13)

Upon inserting equations (13) in (12) we may find an upper bound for the FI of any quantum 
measurement

F(ξ) � Tr[ρξ L2
ξ] = H(ξ),� (14)

which is usually referred to as the quantum Fisher information (QFI) [42–44], and coincides 
with the least monotone quantum Riemannian metric [45]. An optimal estimation strategy 
should employs measurement with F(ξ) = H(ξ) and then use an optimal estimator which 
saturates the quantum Cramer–Rao bound Var ξ̂ � 1/MH(ξ). An optimal measurement with 
F(ξ) = H(ξ) is provided by SLD itself [46], though other problem-specific measurements 
may achieve similar precision.

The overall precision of a parameter estimation strategy is determined on the variance of 
the estimator. In order to compare different strategies, we should assess the variance in terms 
of the mean value, e.g. by means of the signal-to-noise ratio (SNR)

Rξ =
ξ2

Var(ξ)
� (15)

that is larger for good strategies. The Cramer–Rao inequality bounds this quantity with the 
quantum signal-to-noise ratio (QSNR), defined as follows

Rξ � Q(ξ) = ξ2H(ξ).� (16)

I Pizio et alJ. Phys. A: Math. Theor. 52 (2019) 265302
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The larger is Q(ξ) the more estimable is in principle the parameter. Overall, quantum estima-
tion theory says that in order to optimally estimate a parameter, we should find a state prep
aration with the largest QSNR and then measure the SLD, or any other observable with a FI as 
close as possible to the QFI. When the information about the parameter is encoded onto pure 

states ρξ = |ψξ〉〈ψξ|, one has ρ2
ξ = ρξ, and the SLD may be easily found as

Lξ = 2 ∂ξρξ = 2
[
|ψξ〉〈∂ξψξ|+ |∂ξψξ〉〈ψξ|

]
.� (17)

The corresponding QFI is given by H(ξ) = 〈ψξ|L2
ξ|ψξ〉, i.e. [47]

H(ξ) = 4
[
〈∂ξψξ||∂ξψξ〉+ |〈∂ξψξ||ψξ〉|2 + 〈∂ξψξ||ψξ〉2 + 〈ψξ||∂ξψξ〉2

]

� (18)

= 4
[
〈∂ξψξ||∂ξψξ〉 − |〈∂ξψξ||ψξ〉|2

]
,� (19)

where the last equality follows from the fact 〈ψξ||ψξ〉 = 1, ∀ξ and thus ∂ξ〈ψξ||ψξ〉 =  
〈∂ξψξ||ψξ〉+ 〈ψξ||∂ξψξ〉 = 0, i.e. 〈ψξ||∂ξψξ〉 is a purely imaginary quantity.

2.2.  Single-particle quantum probes

Using results from the previous section, we now evaluate the information about a contained 
in the state of a particle in the well, prepared in a given quantum state. In other words, we 
evaluate the QFI of equation (19) for a generic pure state at time t, as in equation (8). In order 
to simplify notation, we will use the following shorthands

∂

∂a
→ ∂,

∫ a

0
dx →

∫
dx,

∞∑
n=1

→
∑

n

.� (20)

At first, we need the derivative of the state with respect to the parameter a, i.e.

|∂f 〉 =
∫

dx
∑

n

∂
[

fn(x)e−iEntψn(x)
]
|x〉� (21)

where g(x, a, t) ≡ ∂
[

fn e−iEntψn(x)
]
 is given by

g(x, a, t) = ψn∂fn + fn∂ψn − itfnψn∂En.� (22)

In equation (22) we have removed the explicit dependence on a, x and t. The derivatives of the 
eigenvalues and eigenfunctions in (22) are given by

∂En = −n2π2

a3
� (23)

∂ψn = −1
2

√
2
a3

[
sin

nπx
a

+
2nπx

a
cos

nπx
a

]
.� (24)

In order to proceed we need few scalar products. The first is just the orthonormality of the 
Hamiltonian basis 〈ψm||ψn〉 =

∫
dxψn(x)ψ∗

m(x) = δmn and the others are

〈ψm||∂ψn〉 =
2
a
(1 − δmn) (−1)m+n mn

n2 − m2� (25)

I Pizio et alJ. Phys. A: Math. Theor. 52 (2019) 265302
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〈∂ψm||∂ψn〉 =(1 − δmn)
(−1)m+n

a2

4 n m (m2 + n2)

(m2 − n2)2

+ δmn
1
a2

(
n2π2

3
+

1
4

)
.

�

(26)

We also notice that 〈ψm||∂ψn〉 is anti-symmetric for the exchange of n and m whereas 
〈∂ψm||∂ψn〉 is symmetric. Using this symmetry it is easy to prove that 〈f ||∂f 〉 is a purely 
imaginary quantity at any time, and for any choice of the initial state, whereas 〈∂f ||∂f 〉 is a 
real quantity. Overall, we have that the QFI in equation (19) may be rewritten as

H(a) = 4
[
〈∂f ||∂f 〉+ 〈f ||∂f 〉2

]
,� (27)

= 4
[
〈∂f ||∂f 〉 − |〈f ||∂f 〉|2

]
.� (28)

2.3.  FI for some relevant measures

Let us focus on the static case, i.e. we assume that a particle in the well is prepared in a given 
quantum state |f 〉, e.g. by a suitable interaction with an external field, possibly assisted by 
quantum control [48–50]. After state preparation, an observable is measured, without leav-
ing the particle time to move within the well, i.e. its quantum state to evolve. We also assume 
without loss of generality (see below) that the wave function f (x) = 〈x||f 〉 is real. In this con-
ditions 〈∂f ||f 〉 = 0 and H(a) = 4

∫
dx (∂f )2. On the other hand, the probability distribution in 

a position measurement is given by p (x|a)  =  |f (x)|2 and thus its Fisher information is

F(a) =
∫

dx
1

|f (x)|2
[
∂|f (x)|2

]2
� (29)

= 4
∫

dx [∂f (x)]2 ,� (30)

which is equal to the QFI for any choice of (real) f (x). If f (x) is complex the line of reasoning 
is the same, though a rotation should be made to the state before measuring position.

Another relevant measurement is that of energy. The possible outcome are the eigenvalues 
of the Hamiltonian, and the probability distribution is given by

p(En|a) = |〈ψn||f 〉|2 = |fn|2.� (31)

The FI for the energy measurement is thus given by

F(a) =
∑

n

1
|〈ψn|f 〉|2

[
∂|〈ψn||f 〉|2

]2

= 4
∑

n

[
∂|fn|

]2
.

� (32)

The energy FI is not, in general, equal to the QFI. In particular, it is useless to prepare the 
particle in an eigenstate of the Hamiltonian, since the only possible result is the correspon-
dent eigenvalue with probability 1 and the measure does not give any information about the 
parameter a. On a generic state, we gain some information from an energy measurement if the 
expansion coefficients does depend on the parameter a.
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3.  Static probes

Let us start our analysis with different possible single-particle preparations and by focussing 
on the static case, i.e. we assume that a particle in the well is prepared in a given quantum 
state |f 〉, possibly by the interaction with an externally controlled field (thus making state prep
aration independent on the width a itself). An observable is measured immediately after the 
state preparation, without leaving the particle the time to evolve.

We start considering an eigenstate of the Hamiltonian and calculate the QFI and the QSNR. 
Since the eigenfunctions are reals, 〈f ||∂af 〉 = 0 and the Q-quantities reads as follows

Hn(a) = 4〈∂ψn||∂ψn〉 =
3 + 4n2π2

3a2
� (33)

Qn = 1 +
4
3

n2π2 = 1 +
8
3

a2En.� (34)

The QSNR does not depend on a and increases with n, which means that in principle we 
should prepare the particle in an eigenstate with large n in order to gain information about the 
parameter a.

We next consider a superposition of two generic eigenstates

|fnm〉 = cosα|ψn〉+ sinα|ψm〉.� (35)

Upon straightforward calculations we have

Qnm(α) = cos2 αQn + sin2 αQm + a2 sin 2α 〈∂ψn|∂ψm〉,� (36)

where 〈∂ψn|∂ψm〉 is given in equation  (26). Also in this case the QSNR does not depend 
on a. We also notice that Qnm(α) = Qmn(π/2 − α) and thus in the following we consider 
m  =  n  +  d  >  n and 0 � α � π/4.

In order to properly assess the effects of superpositions we fix the overall energy of the 
state and compare the QSNR of |fnm〉 with Q[[n̄]], where En̄ is the mean energy of the superposi-
tion state |fnm〉, i.e. En̄ = En cos

2 α+ En+d sin
2 α, and [[x]] denotes the round function, i.e. the 

closest integer to x. We have n � n̄ � n + d where

n̄ =

√
n2 cos2 α+ (n + d)2 sin2 α.� (37)

A remarkable result may be obtained by considering unbalanced superposition corresponding 
to small values of α. In this case, upon defining

γnd(α) =
Qn,n+d(α)

Q[[n̄]]
,

we have

n̄
α�1� n + O(α2)� (38)

γnd(α)
α�1� 1 + (−1)d gnd α+ O(α2)

gnd =
24n(n + d)(d2 + 2nd + 2n2)

d2(d + 2n)2(3 + 4n2π2)
> 0.

� (39)

Equations (38) and (39) say that with a negligible increase of energy, and preparing the par-
ticle in a superposition with even d, one may increase the QSNR by a non-negligible amount. 
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Notice that at fixed n, gnd decreases with d, and thus the most convenient superposition is the 
state |fn,n+2〉.

The examples above suggest that the delocalisation of the particle inside the well may 
play a role in increasing the QSNR. This agrees with intuitive arguments based on the fact 
that position measurement is optimal, and thus the more delocalised is the particle, the more 
information may be gained from a position measurement. In order to make this reasoning 
more quantitative, let us consider the family of states |fp〉 where the wave function is given by

fp(x; a) = N[−(2x − a)2p + a2p]� (40)

where p ∈ N+, p   >  1, and the normalization factor is given by

N =

√
1 + 6p + 8p2

8p2a1+4p .� (41)

The wavefunction in equation (40) becomes more and more flat for increasing p , approaching 
a box function for large p . In figure 2, we show the behaviour of f p (x;a) for different values 
of p  and for a  =  1. Upon exploiting the scaling fp(x; a) = 1/

√
afp(x/a; 1) the behaviour for 

a generic value of the width may be recovered. Concerning the QSNR, after straightforward 
calculations we have

Qp =
(1 + 4p)(1 + 8p)

(4p − 1)
,� (42)

which is independent on a and it is an increasing function of p . We have Q1  =  15 and Qp � 8p 
for large p  (p � 10 is already enough).

The average energy Ep  of a p -state is given by

Ep ≡ 〈 fp|H|fp〉 =
1
a2

1 + 6p + 8p2

4p − 1
,� (43)

and thus, using equations (43) and (3), we have that Ep = En, i.e. |fp〉 and |ψn〉 have the same 
energy if

1 + 6p + 8p2

4p − 1
=

n2π2

2
.

In turn, this means that at fixed energy, the delocalised states |fp〉 provide more information 
than the Hamiltonian eigenstates. This is illustrated in figure 3, where we show the QSRN as 
a function of energy (in unit of 1/a2) for both families of states. Similar conclusions may be 
obtained by considering some specific measure of delocalisation, e.g. the differential entropy 
of the position distribution p (x)  =  |f (x)|2 for different classes of states.

4.  Dynamical probes

In practice, it is not possible to prepare a system and perform a measurement instantaneously. 
As a consequence, a question arises on how the information about the width of the well 
changes with time. In this section, we will introduce time evolution and analyze whether this 
degree of freedom may be exploited to increase the QFI. Intuitively, one may expect evolution 
to be beneficial, since, roughly speaking, the wavefunction does not have the possibility to get 
out of the well and thus should interact with the walls of the well many times, accumulating 
more information about the structure of the potential.
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At first, let us check whether for eigenstate of the Hamiltonian information is left  
unchanged. If we prepare the particle in an eigenstate |ψn〉 at time t the state of the system is 
given by

ψn(x, t) =

√
2
a
sin

(nπ
a

x
)

e−iEnt,� (44)

so that

|∂aψn(t)〉 = e−iEnt
[
|∂aψn〉 − i t (∂aEn)|ψn〉

]
,� (45)

(notice that in this case, the wave function is not real anymore and thus, in general, 
〈ψ||∂ψ〉 �= 0). The QFI is given

Figure 2.  The wave-function in equation (40) for different values of the parameter p . 
The function becomes more and more flat for increasing p , approaching a box function 
for large p .

Figure 3.  The QSNR as a function of energy (expressed in unit of 1/a2) for the 
Hamiltonian eigenstates (red dotted line) and for the delocalised states |fp〉 (black solid 
line). The plot illustrates that, at any fixed value of the energy, delocalised states provide 
more information than the Hamiltonian eigenstates.
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H(a) = 4
[
〈∂ψn(t)||∂ψn(t)〉+ 〈ψn(t)||∂ψn(t)〉2

]
� (46)

=
3 + 4n2π2

3a2 ,� (47)

which is indeed unchanged, compared to the static case.
Let us now consider a generic initial preparation, which evolves as

|f (t)〉 =
∑

n

fn|ψn〉e−iEnt fn = 〈ψn||f 〉 ∈ R.� (48)

We do not report the full expression of the QFI and rather assume that the amplitudes f n do 
not depends on a, i.e. are determined by external operations. In this case the QFI rewrites as

H(a, t) =4

{
t2
∑

n

f 2
n (∂En)

2 −

(∑
n

t f 2
n ∂aEn +

∑
nm

sin(∆nmt) fnfm〈ψm|∂ψn〉

)2

+
∑
nm

cos(∆nmt) fnfm〈∂ψm|∂ψn〉

+ fnfmt sin(∆nmt) (∂Em + ∂En)〈ψm|∂ψn〉

}
,

�

(49)

where ∆nm = En − Em. In turn, equation (49) suggests a t2 dependence of the QFI.
In order to see these feature in a quantitative way, let us consider a simple initial state |f 〉 

with wave function of the form f (x) =
√

30/a5x(a − x), corresponding to amplitudes f n  =  0 
when n is even and fn = 8

√
15/n3π3 if n is odd. Inserting this expression in the QFI of equa-

tion (49) we have

H(a, t) =4

{
120

t2

a6

+ 1920
∑
nm

(−1)m+n (m
2 + n2)

a2π4 n2 m2

[
2 cos(∆nmt)
π2 (m2 − n2)2 − t sin(∆nmt)

a2(m2 − n2)

]

−

(
1920

∑
nm

(−1)n+m sin(∆nmt)
a n2 m2 π6(m2 − n2)

− 10
t

a3

)2 }

�

(50)

where all the sums include odd values only. Upon expanding the QSNR Q(a,t)  =  a2H(a,t) 
for short times, one obtains the leading term Q(a, t) ∼ t2/a4, showing that when the state 
particle evolves within the well the QSNR increases as t2. On the other hand, a dependence 
on the width itself appears, making dynamical probes convenient if the well is not too large, 
compared to the available interaction time. In figure 4 we show the QSNR Q(a, t) as a function 
of time for different values of the width a. Results are obtained by numerically performing 
the sums of equation (50) up to n, m = 50, corresponding to a residual error ε � 10−6. As it 
is apparent from the plot, the expansion Q(a, t) ∼ t2/a4 describes rather all the behaviour of 
Q(a, t) also when the interaction time is not so small. It should be noticed, however, that when 
the interaction t increases, it becomes more and more difficult to avoid the interaction of the 
QW with its environment and, in turn, to consider the dynamics purely Hamiltonian. The same 
behaviour may be observed with different preparation of the particle. Overall, we found that, 
in general, the amount of information about the parameter a increases quadratically for short 
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time at any fixed value of a. At the same time, evolution brings a dependence on the width 
itself, making more and more difficult to estimate its value as it increases.

5.  Entangled probes

In the previous sections, we have considered a single particle as in the well as a quantum probe 
for its width. In this section we address the use of more than one particle, and, in particular, 
of N particles prepared in an entangled state. For the sake of simplicity, we take the particles 
identical, but distinguishable, and non interacting. We will start from two-particle probes, and 
then generalise the analysis to N particles.

5.1. Two-particle entangled probes

In the case of two particles, the total Hamiltonian is given by Htot = H1 + H2 + V , where Hi 
the kinetic term p2

i /2mi and the potential is that of equation (1). The eigenstates are the tensor 
products |ψi〉 ⊗ |ψj〉 of the single-particle eigenstates of equation (2), and the eigenvalues Etot 
are the sum Ei + Ej of the eigenvalues in equation (3).

For any two-particle state

|f 〉〉 =
∫ ∫

dx1dx2 f (x1, x2) |x1〉 ⊗ |x2〉,� (51)

and assuming a real wave-function f (x1, x2) the QFI is given by H(a) = 4
∫∫

dx1dx2 [∂f (x1, x2)]
2, 

thus confirming that also for two particles the (joint) measurement of position is an optimal 
measurement. Notice that the measurement of the position of only one of the particles is not 
optimal.

Let us now consider the two particles prepared in an energy-particle entangled state, i.e. in 
a superposition state where we do not know which particle is in which (Hamiltonian) eigen-
state. The wave-function is given by

Figure 4.  The QSNR Q(a,t)  =  a2H(a,t) see equation  (50) as function of time for 
different values of the parameter a. Numerical results are obtained by truncating the 
sum in equation (50) at n, m = 50, corresponding to a residual error ε � 10−6. The plot 
shows that the QSNR increases with time an decreases with the width a.
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Ψ(x1, x2) =
ψn1(x1)ψn2(x2) + ψn1(x2)ψn2(x1)√

2
.� (52)

Following the procedure outlined in the previous sections, we may easily evaluate the QSNR, 
which may be expressed as

Q(2)
n1n2

= Qn1 + Qn2 + 32
n2

1 n2
2

(n2
1 − n2

2)
2

,� (53)

where Qn1 and Qn2  are the single particle QSNRs given in equation (34). Equation (53) con-
tains a remarkable result: the QSNR obtained using two particles in an entangled state is 
always greater that the QSNR obtained using the two particles in two successive experiments.

Motivated by the results of section 3, let us now consider two-particle probes prepared 
in an entangled state of two single-particle delocalised states of equation (40) with different 
indices, i.e.

fp1p2(x1, x2) =
1√
2

[
fp1(x1; a) fp2(x2; a) + fp1(x2; a) fp2(x1; a)

]
.

�
(54)

The corresponding QSNR is given by

Q(2)
p1p2

= Qp1 + Qp2 +
(1 + 4p1)(1 + 4p2)(1 + 4p1 + 4p2)

2(4p2
1 + 4p2

2 + 8p1p2 − 1)
,

�
(55)

where Qp1 and Qp2  are given in equation  (42). The additional term is positive definite also 
in this case, i.e. entanglement leads to superadditivity of the QFI and the QSNR. In order to 
evaluate quantitatively the improvement, let us introduce the ratio

γp1p2 =
Q(2)

p1p2

Qp1 + Qp2

> 1.� (56)

In figure 5 we show γp1p2 as a function of p 1 and p 2 in the range p = 2, .., 15 (γpp is unde-
fined). Larger values of γp1p2 corresponds to light blue regions (smaller values to red regions). 
The ratio γp1p2 achieves its maximum value γ � 5/4 for p2 = p1 ± 1. For increasing values 
of both the indices, the region in which γ  is close to its maximum becomes larger and larger.

5.2.  N-particle entangled probes

Given the results of the previous section, a question arises on whether using more particles 
one may achieve a better precision. The answer is positive, as it may easily be shown upon 
considering the following three-particle entangled probe, prepared in a W-like state with a 
wave-function of the form

Ψ(x1, x2, x3) =
1√
3

[
ψn1(x1)ψn1(x2)ψn2(x3)

+ ψn1(x1)ψn2(x2)ψn1(x3)

+ ψn2(x1)ψn1(x2)ψn1(x3)
]
.

�

(57)

Upon exploiting equation (25) one arrives at

H(3)
n1n2

=
1
3

[
6Hn1(a) + 3Hn2(a) + 48

∣∣〈∂ψn1 |ψn2〉
∣∣2],
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where Hn(a) is given in equation (33). The QSNR is thus given by

Q(3)
n1n2

= 2Qn1 + Qn2 + 64
n2

1 n2
2

(n2
1 − n2

2)
2

,� (58)

where we have the sum of the single-particle QSNRs and an additional positive definite term, 
which is twice the one obtained with two particles, see equation (53). In order to compare the 
two results in the high-energy regime n1, n2 � 1, let us consider the most convenient choice 
for both, i.e. n1 → n, n2 → 1 + n. In this case, we have

Q(3)
n,1+n

2Qn + Q1+n

n�1
= 1 +

4
π2 + O(

1
En

)� (59)

Q(2)
n,1+n

Qn + Q1+n

n�1
= 1 +

3
π2 + O(

1
En

).� (60)

The argument may be then generalized to more particles, thus confirming that entanglement 
is a resource in the estimation of the width, and that the enhancement may increase with the 
number of entangled particles.

Notice, however, that precision strongly depends on the preparation of the probe, and that 
entanglement alone is not enough to improve precision. In order to show this explicitly, let 
us consider the case of N distinguishable particles prepared in a GHZ-like state, i.e. with a 
wave-function given by

Figure 5.  The ratio γp1p2 as a function of p 1 and p 2 in the range p = 2, .., 15 (γpp is 
undefined). The plot tells us that the entanglement makes the QSNR super-additive 
and that the QSNR of a two-particle entangled states is always larger than the sum of 
the two single-particle QSNRs. Light blue regions correspond to larger values of γp1p2, 
which achieves its maximum value γ � 5/4 for p2 = p1 ± 1.
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Ψ(x1, x2, ...) =
1√
2

[ N∏
i=1

ψni(xi) +

N∏
j=1

ψmj(xj)
]

� (61)

where state m = {m1, ...} is a permutation of n = {n1, ...} and ψk(x) is the kth eigenstate of the 
Hamiltonian. The wave-function is real and so H(a) = 4〈∂aΨ||∂aΨ〉 = 4(I1 + I2)/a2  where

I1 = a2
∫ N∏

i=1

dxi

{[ N∑
j=1

∂ψnj(xj)
∏
l �=j

ψnl(xl)
][ N∑

k=1

∂ψnk(xk)
∏
h�=k

ψnh(xh)
]}

,

� (62)

I2 = a2
∫ N∏

i=1

dxi

{[ N∑
j=1

∂ψnj(xj)
∏
l �=j

ψnl(xl)
][ N∑

k=1

∂ψmk(xk)
∏
h�=k

ψmh(xh)
]}

.

� (63)
Using results from previous sections and after calculations, we have

I1 =
N∑

j=1

(n2
j π

2

3
+

1
4

)
,� (64)

I2 = 4
N∑

k,j=1

δmknjδmjnk

( nknj

n2
k − n2

j

)2 ∏

l �= k
l �= j

δnlml .
� (65)

The corresponding QSNR is given by

Q(N)
n1,n2,...,nN

=

N∑
j=1

Qnj + 16
N∑

k,j=1

δmknjδmjnk

( nknj

n2
k − n2

j

)2 ∏

l �= k
l �= j

δnlml .

The presence of ‘conflicting deltas’ in the expression of Q(N)
n1,n2,...,nN make it impossible to sur-

pass the two-particle QSNR Q(2)
n1n2 of equation (53) using N-particle GHZ-like states.

6.  Conclusions

In this paper, we have used quantum estimation theory as the proper framework to address 
the precise characterization of an infinite potential wells, i.e. the estimation of its width. In 
particular, we have been looking for the optimal measurement to be performed on the particles 
in the well, and for their best preparation, in order to obtain the ultimate bound to precision, as 
imposed by quantum mechanics. In doing this we have evaluated the quantum Fisher informa-
tion of the corresponding quantum statistical models, and the Fisher information for selected 
kind of measurements. We have also considered different preparations of the system in order 
to illustrate the different features of the problem. Finally, we have evaluated the quantum 
signal-to-noise ratio (QSNR) in order to compare the different working regimes.

Our results show that the best measurement we may perform on a static system, is the 
position measure, because in that case the FI equals the QFI for any state and any value of 
the width. On the contrary, performing an energy measurement is useless unless one is able to 

I Pizio et alJ. Phys. A: Math. Theor. 52 (2019) 265302



16

prepare suitable superpositions with parameter dependent coefficients. In a static setting, the 
QSNR is independent of the width, and the best way to initialise the system is to prepare it in a 
delocalized state, which could be an eigenstate of the Hamiltonian with a large eigenvalue, or 
a wave-function as the polynomial in equation (40). We have then considered time evolution 
inside the wells and found that the QSNR increases with time as t2, at least for short evolving 
time. Letting the system evolve is thus convenient, since the amount of information increases. 
On the other hand, the QSNR decreases with a itself, and so time evolution is a resource only 
if the well is large enough compared to the available interaction time.

Finally, we have considered N-particle probes and found that entanglement enhances preci-
sion, since the QSNR is the sum of the single-particle QSNRs plus a positive definite term, 
which depends on state preparation, and may increase with the number of entangled particles.
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