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Noisy quantum walks are studied from the perspective of comparing their quantumness as defined by two
popular measures, measurement-induced disturbance (MID) and quantum discord (QD). While the former has
an operational definition, unlike the latter, it also tends to overestimate nonclassicality because of a lack of
optimization over local measurements. Applied to quantum walks, we find that MID, while acting as a loose
upper bound on QD, still tends to reflect correctly trends in the behavior of the latter. However, there are regimes
where its behavior is not indicative of nonclassicality: in particular, we find an instance where MID increases
with the application of noise, where we expect a reduction of quantumness.
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I. INTRODUCTION

Many useful quantities in quantum information theory
(such as various quantifications of entanglement and channel
capacities) lack an operational definition. Quantifying the
degree of nonclassicality or quantumness in a state is one such.
Intuitively, we expect that entanglement captures all of the
nonclassicality in a correlation. We now know that in general
this is not the case and that, for mixed states, nonclassicality,
nonlocality, and entanglement are not identical.

In the case of quantifying the quantumness of a bipartite
state, following the proposal of quantum discord (QD) [1],
which requires an extremization over local measurement
strategies, measurement-induced disturbance (MID) [2] was
proposed as an operational measure. Recently, QD has received
several operational interpretations, in terms of the efficiency
of Maxwell’s demon [3], the entanglement consumed [4] or
quantum communication [5] during state merging, and dis-
tillable entanglement in quantum measurement [6]. However,
the difficulties posed by the required optimization remain. In
contrast, MID requires no such optimization, instead it uses the
local measurement strategy defined by the diagonalization of
the reduced density operators. If MID were a good indicator
of nonclassicality, in particular, if it correctly reflected the
behavior of QD, we would have a happy instance of an oper-
ational proxy for genuine nonclassicality. However, Ref. [7]
has reported several difficulties with the use of MID for a
two-qubit system. In particular, there are states of vanishing
(symmetrized) discord for which MID is maximal. One way
to ameliorate the performance of MID is to optimize it over
all possible local measurements [7]. In this work, we compare
these two indicators of nonclassicality by applying them to
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a unitary and noisy discrete-time quantum walk (DTQW),
treated as a (2 × k)-dimensional system.

Quantum walks (QWs) [8,9], which are the quantum
analogs of classical random walks (CRWs), have been exten-
sively studied as a quantum algorithm [10–16], to demonstrate
coherent control over atoms [17], to explain phenomena such
as the breakdown of an electric-field driven system [18], and
as direct experimental evidence for wavelike energy transfer
within photosynthetic systems [19,20]. Decoherence in a QW
and the transition of a QW to a CRW is quite important from the
viewpoint of practical implementation, and it has been studied
by various authors [21–27]. In particular, in Refs. [24–26],
we investigated some qualitatively different ways in which
environmental effects suppress quantum superposition in a
QW on a line and on an n-cycle.

This Brief Report is arranged as follows. In Sec. II we briefly
introduce the DTQW model on a line and on an n-cycle as well
as the noise channel used for our study. In Sec. III we compare
and contrast the quantumness of a QW subjected to noise,
as computed by QD and MID, to quantify the quantumness
and investigate the proximity of the outcomes using the two
measures, MID and QD. Finally, we conclude in Sec. IV.

II. DISCRETE-TIME QUANTUM WALK ON A LINE
AND AN n-CYCLE

A DTQW in one dimension is modeled as a particle
consisting of a two-level coin (a qubit) existing in the Hilbert
space Hc, spanned by |0〉 and |1〉, and a position degree of
freedom existing in the Hilbert space Hp, spanned by |ψx〉,
where x ∈ I, the set of integers. In an n-cycle walk, there are
only n allowed positions, and in addition the periodic boundary
condition |ψx〉 = |ψx mod n〉 is imposed. For our study, a t-step
coined QW is generated by iteratively applying a unitary
operation W , which acts on the Hilbert space Hc ⊗ Hp:

|�t 〉 = Wt |�in〉, (2.1)
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where |�in〉 = 1√
2
[(|0〉 + i|1〉) ⊗ |ψ0〉] is an initial state of

the particle and W ≡ U (B ⊗ 1), where U (2) � B = Bθ ≡( cos(θ) sin(θ)
sin(θ) − cos(θ)

)
is the coin operation. U is the controlled-shift

operation

U ≡ |0〉〈0| ⊗
∑

x

|ψx−1〉〈ψx | + |1〉〈1| ⊗
∑

x

|ψx+1〉〈ψx |.
(2.2)

For an n-cycle, |ψx−1〉 and |ψx+1〉 are replaced by |ψx−1 mod n〉
and |ψx+1 mod n〉, respectively. The probability of finding
the particle at site x after t steps is given by p(x,t) =
〈ψx |Trc(|�t 〉〈�t |)|ψx〉. To quantify quantumness when noise
is applied to a DTQW, we will consider the amplitude-damping
channel [28] parametrized by λ, which has the following
operator-sum representation:

E0 ≡
[√

1 − λ 0
0 1

]
, E1 ≡

[
0 0
0

√
λ

]
, (2.3)

where λ ranges from the noiseless case (0) to that of maximum
noise (1). More general noise models can be used, such
as a dissipative interaction in the presence of a squeezed
thermal bath [29], but the above simple model captures all
the essential physics, and is hence found to be sufficient for
present purposes.

III. QUANTIFYING QUANTUMNESS

A number of measures for quantifying quantumness exist
[1,2,30–32], most of which are not operationally defined.
Except in the simplest cases, extensive numerics would
be needed. From these, we selected measurement-induced
disturbance [2], which has an operational definition, and
quantum discord (QD) [1], which involves extremization over
measurement strategies. We consider the classicalization of a
QW on a line and on an n-cycle under the influence of the
amplitude-damping channel Eq. (2.3).

(a) Measurement-induced disturbance. Given a bipartite
state ρ existng in the Hilbert space HC ⊗ HP , let the reduced
density matrices be denoted by ρC and ρP . Let ρC = ∑

i p
i
C�i

C

and ρP = ∑
j p

j

P �
j

P . The measurement induced by the
spectral resolution of the reduced states is

�(ρ) ≡
∑
j,k

�
j

C ⊗ �k
P ρ�

j

C ⊗ �k
P , (3.1)

which may be considered classical in the sense that there is
a (unique) local measurement strategy, namely, �, that leaves
�(ρ) unchanged. This strategy is special in that it produces a
classical state in ρ while keeping the reduced states invariant.

According to Luo [2], a reasonable measure of quantumness
is MID, given by

Q(ρ) = I (ρ) − I [�(ρ)], (3.2)

where I (·) is mutual information. Accordingly, Eq. (3.2) is
interpreted as the difference between the total and classical
correlations.

(b) Quantum discord. Quantum discord [1] is given by

D(P |C) = I(P : C)Q − J (P : C)Q{�C
j } (3.3)

= S(C) − S(P,C) + S
(
P

∣∣{NC
j

})
(3.4)

= S
(
P

∣∣{NC
j

}) − S(P |C), (3.5)

where S(P |{NC
j }) = ∑

j pjS(ρX|NC
j

). ρX|NC
j

= TrC[IP ⊗
NC

j ρP,C]/ Tr[NC
j ρP,C] is the state of P after outcome NC

j . This
is in general computationally very intensive. However, it has
been shown that for qubit systems it suffices to consider rank-1
positive operator valued measures (POVMs) [33], which for
qubits reduces to projective measurements.

We have numerically evaluated D(P |C) by minimiz-
ing Eq. (3.5) by performing projective measurement over
all bases for C parametrized by α and β: {cos(α)|0〉 +
eiβ sin(α)|1〉, e−iβ sin(α)|0〉 − cos(α)|1〉}. Because of Theo-
rem 1 below, a comparison of QD and MID is interesting
only for mixed states.

Theorem 1. For pure states, MID, QD, and entanglement
are identical.

D(P |C) = S
(
P

∣∣{NC
j

}) − S(P |C)

= S
(
P

∣∣{NC
j

}) − S(P,C) + S(C)

= S
(
P

∣∣{NC
j

}) + S(C).

Proof. The expression P |{NC
j } is the state of P after C is mea-

sured. In the case of entangled pure bipartite states, by virtue
of Schmidt decomposition, when the outcome of measuring
C is known, the state of P after measuring C is also exactly
known and hence is pure. Therefore S(P |{NC

j }) = 0. Hence,
the expression forD(P |C) reduces to S(P ) = S(C) in the pure
case. Again, by Eq. (3.2), MID equals 2S(C) − S(C) = S(C),
as does entanglement [2]. �

Two simple consequences are that for pure bipartite sys-
tems, entanglement captures all of the quantumness, and that
QD is symmetric in this case. For mixed states, the situation
is of course complicated. One fact, however, is the following
result.

Theorem 2. QD � MID.
Proof. Noting that ρA = TrB(ρAB) = TrB[�(ρAB)],

we find Q(ρCP ) = S�(P |C) − S(P |C), where S�(P |C)
is the conditional entropy evaluated on �(ρ), in
view of Eq. (3.2). Comparing this with (3.5) we
find that Q(ρCP ) − D(P |C) = S�(P |C) − S(P |{NC

j }),
which is always positive for the following reason.
Clearly, S�(P |{NC

j }) � S(P |{NC
j }). Now, S�(P |C) =

S (
∑

j,k p(j,k) | j,k 〉PC PC 〈j,k|) − S(
∑

j p(j )|j 〉CC〈j |) =
−∑

j,k p(k) p (j |k) ln [p(j | k)] = ∑
k p(k) S� (P | C)k =

S�(P |{Ej }), where p(j,k) is the joint probability of outcomes
j and k by measuring �(ρPC) in the eigenbases Ej of their
respective reduced density operators, p(j ) ≡ ∑

k p(j,k),
p(j |k) = p(j,k)/p(k), and S�(P |{Ej }) is the average
uncertainty in the first register by measuring the second
register in the diagonal basis of the latter’s density operator.
Clearly, S�(P |{Ej }) � S�(P |{NC

j }), and we have the required
result. �

064302-2



BRIEF REPORTS PHYSICAL REVIEW A 83, 064302 (2011)

 0.6

 0.8

 1

 1.2

 1.4

 0  20  40  60  80  100  120  140  160  180  200

Q
ua

nt
um

ne
ss

Number of steps t

QD
MID

 0.6

 0.8

 1

 1.2

 0  20  40  60  80  100

FIG. 1. (Color online) QD and MID for a unitary walk using Bπ/2

as a quantum coin operation on a 51-cycle (inset is for a 100-iteration
walk on a line). For a noiseless walk, the quantumness using MID
and QD is the same (see Theorem 1).

Figure 1 depicts QD and MID for a unitary walk for
pure states, which are identical in this case as noted in
Theorem 1. We note that whereas the quantumness for a
walk on a line stabilizes eventually, that for a walk on a
cycle shows a periodic increase in quantumness, which is
associated with “crossovers,” where the left- and right-moving
partial waves interfere. Figure 2 shows the expected decrease
of quantumness with noise, for both linear and cyclic walks.
While MID is seen to upper-bound QD everywhere (except
at extremal points, where they are identical), it still tends to
reproduce the features of the latter’s plot, such as the steep fall
and the plateau thereafter.

Figure 3 depicts the θ dependence of the periodicity of the
crossovers of the left- and right-moving components of the
walk. This may be understood in terms of the wave-packet
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FIG. 2. (Color online) QD and MID for a quantum walk with the
increase of noise level due to an amplitude-damping channel on a
51-cycle, after 70 and 200 iterations, respectively (inset is for a walk
on a line after 100 iterations). Owing to the closed, periodic dynamics
in the n-cycle, the effect of very little noise is amplified leading to a
steep reduction in the quantumness. We note that MID and QD follow
a similar trend. In general, QD � MID [7].
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FIG. 3. (Color online) The quantumness using MID and QD, for
a unitary walk on a 51-cycle with different coin parameters θ in Bθ ,
is the same. We note that the frequency of dominant oscillations falls
with θ , a behavior we expect from the fact that the speed of a wave
packet is proportional to

√
cos θ [34].

dynamics implied by the walk. In Ref. [34], it was shown
that the wave velocity obtained by recasting a DTQW as a
relativisticlike equation is proportional to

√
cos θ .

Figure 4 presents MID and QD as a function of time for
two different noise levels. They present a similar degree of
sensitivity (with fluctuations roughly in tune with magnitude)
and an expected overall reduction with noise. However, MID
shows a rise in the regime t ∼ 10 to t ∼ 60, for the noise
parameter λ = 0.01, which would clearly be unphysical for an
indicator of nonclassicality, as corroborated by the monotonic
fall of QD in this regime. This pathological behavior can be
attributed to the nonoptimization over local measurements
in MID. It may be predicted that if the optimization were
performed, the resulting ameliorated MID [7] would show
monotonically decreasing behavior. If one could analytically
isolate the class of states for which MID applied to a DTQW
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FIG. 4. (Color online) Quantumness on a walk with an increase
in noise level on a 51-cycle using Bπ/4 as the coin operation. We
note that, although both quantumness measures show similar trends
including with fluctuations, in the regime t ∼ 10 to t ∼ 60, MID
increases (for λ = 0.01), whereas QD evinces the expected behavior.
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shows such pathological behavior, and we are able to confirm
that the specific instance of walk dynamics does not involve
such states, then presumably one could still employ MID as a
useful and easy-to-compute indicator of quantumness [26].

IV. CONCLUSION

Noisy quantum walks have been studied from the perspec-
tive of comparing MID and QD as indicators of nonclassicality,
when applied to linear and cyclic DTQWs. MID acts as

a loose upper bound to QD, sometimes properly reflecting
even fine trends in the latter’s behavior. However, there are
regimes where it obviously manifests artifacts due to the lack
of optimization over local measurements.
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