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Abstract Quantum walk is a synonym for multi-path inter-
ference and faster spread of a particle in a superposition of
position space. We study the effects of a quantum mechanical
interaction modeled to mimic quantum mechanical gravita-
tional interaction between the two states of the walkers. The
study has been carried out to investigate the entanglement
generation between the two quantum walkers that do not
otherwise interact. We see that the states do in fact get entan-
gled more and more as the quantum walks unfold, and there
is an interesting dependence of entanglement generation on
the mass of the two particles performing the walks. With the
introduction of noise into the dynamics, we also show the
sensitivity of entanglement between the two walkers on the
noise introduced in one of the walks. The signature of quan-
tum effects due to gravitational interactions highlights the
potential role of quantum systems in probing the nature of
gravity.

1 Introduction

One of the most elusive quests in theoretical physics for
almost a century now has been the understanding of the quan-
tum nature of gravity. Some of the most promising theories
of our age that are attempting to answer this question, work
at length scales that are far beyond our experimental capa-
bilities. For this reason, there has been an interest to look for
the signature of quantum gravity, both at the cosmological
scales [1], as well as in tabletop experimental setups. The later
approaches attempt to probe the Planck scale length [2,3], as
well as the quantum nature of gravity itself by exploiting the
phenomena of quantum interference and quantum entangle-
ment. With the experimental advancement over last decade
reporting control over quantum systems, a revived interest
proposes experiments using quantum interference to answer
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if the gravitational attraction between two masses is quan-
tum mechanical [4,5]. The basic set-up for both the papers
consists of two massive particles, each prepared in a superpo-
sition of two position states. The particles then evolve under
their mutual gravitational interaction. The claim is that if we
see entanglement generation between the particles, we must
conclude that the interaction between the two particles, which
in this case is only gravitational, must be quantum mechan-
ical in nature. This is because a classical interaction cannot
generate entanglement. Further, the model of gravitational
interaction between the two objects in a superposition of two
positions requires that the gravitational attraction itself be
in a superposition of two different values. This argument,
in fact, finds its roots in the interaction between Feynman
and colleagues including Bondi, Bergmann, Wheeler, and
others at the 1957 Chapel Hill Conference [6]. While dis-
cussing whether gravity at all should be quantized, Feynman
proposes an experiment in which a little ball of diameter
1cm is prepared in a quantum superposition of two states.
This ball is then used to move another object gravitationally
which should (according to Feynman) carry the information
of the quantum amplitudes (which can be checked by per-
forming interference experiments on the second ball). The
argument is that if one can prove that the information of the
quantum amplitudes can travel across a gravitational channel,
the channel must be quantum mechanical; unless, of course,
quantum mechanics fails at mass ranges where gravity starts
getting significant. The recent proposals in [4,5] improve on
this thought experiment to find a witness (in form of entangle-
ment entropy) for the quantum mechanical nature of gravity
using an interference set-up.

In this paper, we generalize the given model of gravita-
tional interaction to a system of two particles performing
quantum walks. The discrete-time quantum walks, version
studied in this work provide a more controlled way of han-
dling interferences, engineer any arbitrary configuration of
state in a superposition of position space [7] and model the
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effect of noise in the dynamics. They have also been used to
simulate various quantum systems including Dirac fields (see
eg. [8–12]). So, studying them under the action of a “gravita-
tional” model can give us interesting insights into the effects
of such interactions in quantum systems and help us to probe
further investigations towards the quantum nature of grav-
ity. In our work we explicitly see how entanglement between
two particles of given masses changes with time. We also
explore the relationship between the mass of the quantum
particles and the entanglement generation due to the gravita-
tional interaction between them.

In Sect. 2 we provide a short introduction to quantum
walks and in Sect. 3 we present our model of two interacting
quantum walks. Section 4 includes the results on the entan-
glement growth with time and mass between the two walks.
Conclusions and discussions of the results have been pre-
sented in Sect. 5 .

2 Quantum walks

In a classical random walk, a particle hops over the different
lattice points based on the result of a coin toss. In the same
spirit, a quantum mechanical particle performs a quantum
walk by hopping onto the different lattice sites based on the
result of a quantum coin toss, a rotation in the space of internal
degrees of freedom of the particle. The difference arises in
the fact that unlike a classical coin that can exist exclusively
in one or the other state, a quantum particle can exist in a
superposition of two or more states. As a result, the hopping,
which is conditional on the result of the coin toss, takes place
in the superposition of two different lattice sites [12]. Thus the
quantum property of superposition gives rise to the various
constructive and destructive interference in the quantum walk
which gives it a probability distribution that has properties
drastically different from its classical counterpart. Here we
present a standard description of the single particle quantum
walk on a one dimensional position space.

Let us consider a quantum particle with two internal
state |↑〉 and |↓〉 at a localized initial position, the origin
|x = 0〉 ≡ |0〉. When the particle is initially in only of
the internal state, |↑〉, we represent this combined state by
|0〉 ⊗ |↑〉, indicating that the state lives in the direct product
Hilbert space of the spin (the coin space) and position Hilbert
space, Hc and Hp, respectively. Here we take our position
states to be orthonormal. Orthogonality of the position states
stems from the assumption that at each site the wave func-
tion has a spread of δx which is much smaller than the lattice
spacing a. So, the overlap of two different position states
vanishes: 〈x |y〉 = δx,y .

The first step of the walk is to perform a rotation in the spin
space (or a coin space), just like a coin toss, using a unitary

Fig. 1 Probability distribution of the state after 100 steps of one dimen-
sional quantum walk starting at the origin for the initial state a |↑〉 and
b (|↑〉 + i |↓〉)/√2. The coin used is two dimensional Hadamard. Only
the even positions are plotted, as the odd positions after even steps of
the walk have zero probability

operator, let us say a Hadamard operator H2 = 1√
2

[
1 1
1 −1

]
.

This operation is represented as

(I ⊗ H2) · (|0〉 ⊗ |↑〉) = |0〉|↑〉 + |0〉|↓〉√
2

, (1)

where I represents the identity operation on the position
space. The coin operation is followed by the shift operation,
to effect a change of the state in position space, conditioned
on the spin state. We can assign the shift to the right by one
position for |↓〉 states and to the left for |↑〉. This operation,
for any state at position x will be of the form given by

S =
∑
x

|x − 1〉〈x | ⊗ |↑〉〈↑| + |x + 1〉〈x | ⊗ |↓〉〈↓|. (2)

One step of the walk for a state |ψ〉 = |0〉 ⊗ |↑〉 will then be
given by the operation W |ψ〉 = S · (I ⊗ H2)|ψ〉. t steps of
the walk will be realized by the t-times implementation of
the walk operator, Wt = [S · (I ⊗ H2)]t .

Figure 1a shows the probability distribution after t = 100
on the walker with initial state |0〉|↑〉. We can see that the
final distribution of a state depends on the kind of coin that is
used and also on the initial state. For example, Fig. 1b shows
the distribution after 100 steps of the walk with Hadamard
coin operation for the particle with the initial state |0〉(|↑〉 +
i |↓〉)/√2. A more general form of coin operation,

C(θ) =
[

cos(θ) sin(θ)

− sin(θ) cos(θ)

]
. (3)

can be used in place of Hadamard operation H2 to have more
control over the walk dynamics. In this work we will use (θ)

as the coin operation.
Apart from the discrete time walks discussed here, quan-

tum walks can also be defined for continuous time evolu-
tion [13]. In addition, one can construct different forms of
quantum walks by defining different combination of the coin
and shift operators. One such example is the split-step quan-
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Fig. 2 Two quantum walks on a plane, each restricted to a one dimen-
sional walk parallel to each other. Distance between them is L times
the lattice distance a. We take L to be large compared to the spread of
the walk after t amount of time

tum walk [14] that has been shown to model the Dirac cellular
automaton [15] and so is useful for quantum algorithms.

3 Quantum walks under mutual gravity

Here we will generalize the model of gravitational attraction
proposed by Bose et al. [4] and Martletto et al. [5] to quan-
tum walks. We consider a simplified system of two massive
particles with two internal states in a two-dimensional dis-
crete space, each performing discrete time quantum walks
in one-dimensional space parallel to each other (see Fig. 2).
We assume that the states are initially separable and the two
walks start at the same time. After every step of the walk, the
state evolves into a superposition of components at different
positions. State of the first particle ψ with two dimensional
coin space, (|↑〉 and |↓〉) has the following general form after
t steps of walk, starting from the position i = 0,

ψ(t) =
t∑

i=−t

|i〉 ⊗ (pui (t)|↑〉 + pdi (t)|↓〉). (4)

Here i are the lattice indices on which the walk is being
performed. |pui |2 (|pdi |2) is the probability of spin state |↑〉
(|↓〉) at i .

State of the second particle φ at position j = 0 which
starts a quantum walk parallel to first particle at time t = 0
(see Fig. 2) has the following form at time t

φ(t) =
t∑

j=−t

| j〉 ⊗ (quj (t)|↑〉 + qdj (t)|↓〉). (5)

At time t = 0 the composite state is |ψφ〉. If there are no
quantum mechanical interactions between these states, the
state of the system as a whole remains a product state. �(t) =
ψ(t) ⊗ φ(t).

Let us introduce the interaction between the component
|i A〉 of the first walk and the component | jB〉 of the second

walk and ensure that it depends only on the distance between
the two points, i of the first lattice and j of the second lattice,
and not show any dependency on the other components or
on the spin states. With such an interaction, each component
of the product state will evolve with respect to a different
Hamiltonian. If this interaction is gravitational in the weak
field limit, the component |i A〉| jB〉 will undergo unitary evo-
lution with the Hamiltonian

〈Ĥi j 〉 = −GmAmB

|r̂i j | , (6)

where r̂i j is the distance between lattice site i A and jB , aver-
aged over the spatial distribution of the respective particles
around these sites [16] and mA and mB are the masses of the
two particles.

The assumption that gravity is quantum mechanical is
implicit in this model of interaction. Because each compo-
nent of the product state evolves with respect to a different
Hamiltonian, the effective gravitational field between the two
walks at a given time cannot be given by one field configu-
ration. Hence, such an evolution assumes that the field itself
is in a superposition of different configurations. A simplistic
example explaining why such a field should be considered
a quantum field is provided in Fig. 3. With such a model
of interaction, quantum information (like the amplitudes of
each component) can be transmitted to another system. Such
a field must be a quantum field because classical channels
cannot transmit quantum information.

The measure of distance in Eq. (6) will depend on the kind
of lattice we work on. But if we take the parallel distance
between the two walks to be much greater than the lattice
spacing as well as the region in which each walk spreads,
it is safe to take the distance measure to be the Euclidean
distance between the two sites. Furthermore, we assume that
the background space-time on which the walk takes place is
discretized at Plank scales. So the lattice parameter of the
walk (a), is a multiple of the lattice parameter of the discrete
space, which we take to be the Plank length l p. i.e. we define
a to be

a = |r(i A) − r(i A + 1)| = Ndlp. (7)

Here r(i A) is the position vector of the i − th site of the
walk A and Nd is the multiplication factor. So, the Euclidean
distance between the sites r(i A) and r( jB) is given by

|〈r̂i j 〉| = Ndlp

√
L2 + |i A − jB |2 ≡ Ndlpdi j . (8)

Here we have defined di j = √
L2 + |i A − jB |2. Similarly,

the time taken between the two successive steps of the walk
can be taken as a multiple of the Plank time tp, δt = Nt tp
with Nt being the multiplicative factor. With this in mind,
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Fig. 3 Illustrating the difference between a classical and quantum
field: Given a particle in a superposition of two positions, shown by
the blue disks inside a box, we consider two possible ways an interac-
tion between this particle and another system can take place. a Shows

the case when the particle produces a field in a singular configuration.
Contrasting it with b, that shows the case when each component of the
superposition produces its own field. The effective field in this can only
be described as a superposition of two fields thus generated

the component |i A〉| jB〉 in a walk of t steps evolves under
the Hamiltonian, given by Eq. (6), for the following amount
of time

�ti j = Nt tpmin(t − |i |, t − | j |) − |〈r̂i j 〉|/c. (9)

The −|〈r̂i j 〉|/c term ensures the locality of the gravitational
interaction as it is the time taken for the carrier of interaction
to travel the distance between the two lattice sites at the speed
of light.

As a result, the two-state system at time t takes the fol-
lowing form due to the gravitational interaction,

|�G(t)〉 =
t∑

i, j=−t

e−igi j (t)
(
|i A〉 ⊗ (pui |↑〉 + pdi |↓〉)

)

⊗
(
| jB〉 ⊗ (quj |↑〉 + qdj |↓〉)

)
.

(10)

Here gi j (t) is the phase acquired due to the gravitational
potential between the site i of state A and j of state B.

It is given by,

gi j (t) = − GmAmB�ti j
h̄|〈r̂i j 〉|

= − GmAmB

h̄

[Nt tpmin(t − |i |, t − | j |)
Ndlpdi j

− 1

c

]

= − mAmB

mp
2

[Ntmin(t − |i |, t − | j |)
Nddi j

− 1
]
.

(11)

We have used the fact: l p/tp = c and
√
ch̄/G = mp being

the Plank mass. We see that there is a constant phase term that
can be dropped since entanglement depends only on the rel-
ative phases of the components. A discrete time one dimen-
sional quantum walk with coin operation C(θ) of the form
given in Eq. (3) is known to be a discretized model of the
two component one dimensional Dirac equation [15,17,18].
In the continuum limit of a DTQW, when the space parameter
a and the time parameter δt tend to zero such that a/δt = c, c
being the speed of light, the Hamiltonian of the walk resem-
bles the Dirac Hamiltonian, given, we identify the mass of the
Dirac particle with the coin parameters as m = h̄ sin(θ)/δt .

Since we have assumed that the space is discretized into Plank
length, and time is discretized into Plank time, we take a = l p
and δt = tp. So we approximate,

∂tψ ∼ (ψ(t + tp) − ψ(t))/tp

∂zψ ∼ (ψ(z + l p) − ψ(z))/ l p.
(12)

Using these substitutions for a walk in z direction, we get the
following dynamical equation,

i h̄∂tψ =
(

− i h̄cσz∂z + h̄c

l p
σy sin(θ)

)
ψ, (13)

where σz and σy are the Pauli matrices. The two component
Dirac equation is given by:

i h̄∂tψ = ( − i h̄cα̂∂z + β̂mc2)ψ. (14)

such that α̂2 = β̂2 = 1 and {α̂, β̂} = 0. Comparing the two
Eqs. (13) and (14), we see that the mass of the Dirac state ψ

is proportional to sin(θ),

m = mp sin θ. (15)

Plank mass mp is the proportionality constant. We use this
definition of mass while evaluating the phase in Eq. (11) to
put in the mass of the quantum walkers. For a component
|i A〉| jB〉, suppose | j | > |i |, then the associated phase will be
given by

gi j (t) = − Nt

Nd

mAmB(t − | j |)
mp

2di j

= − Nt

Nd

sin(θA) sin(θB)(t − | j |)
di j

.

(16)

With this expression we have shown that the phase acquired
by each component due to gravity can be expressed solely in
terms of the walk parameters.
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Fig. 4 Entanglement entropy between two parallel 1D quantum walks
under gravity for different mass pairs. Numbers in the bracket rep-
resent the mass parameters of the two states, (θA, θB) where θ =
sin−1(m/mp)). The initial spin states of the two walkers are a |↑〉 and
b |↓〉, however we note that the initial spin states have no effect on EE

In the remaining part of this work, we will focus on the
simulation of quantum walks under the given model of gravi-
tational interaction. To make the computations unambiguous
and less dependent on machine errors, we make the follow-
ing two adjustments to the phase factor in Eq. (16): (1) We
take Nt = Nd which essentially means that at each step the
hopping speed of the particle is c. This does not mean that
the particle as a whole is moving at the speed of light because
its velocity is determined by the group velocity of the wave
function which is bounded above by c times the cosine of
θ [19]. This is also a necessary condition for interpreting the
quantum walk as a discrete version of Dirac Hamiltonian. (2)
We use large values of θ (∼ π/4) which means that we are
simulating walks with very large masses (∼ mp). We do this
because we run these simulations for a very small number
of steps. One can in principle see measurable entanglement
for masses ∼ 10−14kg (for which superposition have been
observed [20]) if the walks are performed for a very large
number of steps.

4 Entanglement

Entanglement entropy Entanglement entropy between two
subsystems A and B is a von Neumann entropy of the density
matrix reduced with respect to one of the systems. So if we
trace out the spin and position space of the state A from the
density matrix ρ = |�G〉〈�G |, we get the reduced density
matrix ρB , and the entanglement entropy is then calculated
as:

EE = −
∑
i

λi ln(λi ), (17)

where λi are the eigenvalues of ρB . This reduced density
matrix takes the following form:

ρB =
∑
j,k

∑
l

Ple
−i(gil−g jl )| jB〉〈kB | ⊗ |sBj 〉〈sBk |, (18)

where Pl is the probability of the state A at site ’l’. We can
see this matrix as a perturbation to the pure density matrix
ρo
B = ∑

jk | j〉〈k| ⊗ |sBj 〉〈sBk |, so that ρB is a Hadamard

product of the matrix Ki j = ∑
l Ple

−i(gil−g jl ) with ρo
B ,

ρB = K ◦ ρo
B . (19)

The change in the eigen-spectrum due to a perturbation ρ →
ρ + δρ is given by,

λ′
i = λi + Xt

i δρXi , (20)

where Xi are the corresponding eigenvectors. Given that ρo
B

has one non-zero eigenvalue λ1 = 1 with eigenvector X1 =∑
j | j〉|sBj 〉, the leading contribution to the new eigenvalue

is given by:

δλ′
1 =

∑
j,k,l

Q j Qk Pl(e
−i(gil−g jl ) − 1). (21)

{Qi } are the probability distribution of the state B and {Pi }
are probability distribution of state A. A few more steps of
calculation, under the approximation that L 
 t , will show
that the first order correction to the eigenvalue vanishes and
the second order correction, which is a function of the second
moment of the distributions of the two states provides the
leading order contribution,

δ(2)λ′
1 ∝ sin(θA)2 sin(θB)2

[ ∑
l>i, j

Qi Q j Pl(t − l)2

+
∑
l<i, j

Qi Q j Pl(t − i)(t − j) +
∑
i>l> j

Qi Q j Pl(t − i)(t − l)

+
∑
l>i, j

Qi Q j Pl(t − l)(t − j)
]
.

(22)

We measure the entanglement entropy for the state |�G〉
given by Eq. (10). Based on the simulations run for different
mass pairs of quantum walkers, we obtain EE between the
two walkers as shown in Fig. 4. θ = sin−1(m/mp) is the
coin parameter (or the mass parameter). As the states evolve
in the walk, EE between the two states typically increases
quadratically with each time step. In addition, EE after a time
t is typically higher for higher θ values, till about θ ∼ π/3.
The fact that the second moment of the quantum walks is a
decreasing function of θ shows the significance of parame-
terizing mass of the walker in terms of the walk parameter
(see Eq. 15) (see Appendix for more discussions). Further-
more, EE is independent of the initial spin state of the walks,
which also is an expected property as the even moments of a
DTQW do not depend on the initial spin state [21].
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Negativity We calculate entanglement between the spatial
degrees of freedom of the two interacting walks. By summing
over the spin degrees of freedom of the product state |�G〉
we get the reduced density matrix ρt . The density matrix ρt

and can be calculated by first tracing out the spins of the
subsystem B,

ρt
B = 〈↑B |(|�G〉〈�G |)|↑B〉 + 〈↓B |(|�G〉〈�G |)|↓B〉 (23)

followed by tracing out the spins of the subsystem A:

ρt = 〈↑A|ρt
B |↑A〉 + 〈↓A|ρt

B |↓A〉. (24)

The resulting reduced density matrix ρt is no longer in a
pure state and hence entanglement entropy is not the right
measure of entanglement between its two sub-systems (the
spatial degrees of freedom of the walks). For mixed states, the
Positive Partial Transpose (PPT) criterion gives a necessary
condition to establish the separability of the density matrix.
It says that if the partial transpose of the density matrix, with
respect to any one of the sub-systems, is a positive density
matrix, the total density matrix must have a separable form.
A violation of this condition shows the presence of entangle-
ment between the two subsystems. Negativity is a measure
of entanglement derived from the PPT criterion. For a den-
sity matrix ρ, the negativity is the sum of the eigenvalues

of its partial transpose, N (ρ) = ∑
i
|λi | − λi

2
, where λi are

the eigenvalues of the partial transposed matrix ρ� . Unlike
some other measures of entanglement, negativity does not
converge to entanglement entropy for pure states [22] and is
an entanglement monotone for 2×2 and 2×3 systems. How-
ever a positive value for negativity is a sufficient condition
to establish entanglement in system [23,24].

Negativity for three different mass pairs, parameterized
by (θA, θB), is plotted in Figs. 5 and 6 for the full system and
after tracing out the spin degree of freedom. We see that neg-
ativity is independent of the initial spin state of the walks and
increases linearly with the number of steps. Furthermore, just
like the case of entanglement entropy, negativity for higher
mass pairs is higher compared to the lower mass pairs after
the same time steps. We see that the value of negativity after
tracing out the spin degree of freedom follows the same trend
as the original state |�G〉. However, entanglements for differ-
ent pairs of initial states do not exactly overlap. This hints at
the possibility that the negativity of a spin traced system also
depends on the odd moments of the probability distributions.
Effect of noise Introduction of noise, like a simple bit flip
(σx gate) or a phase flip (σz gate), introduced with a proba-
bility p into a system reduces the effects of quantum inter-
ference in the dynamics of the system [25,26]. The “two
quantum walks” system separated by a large distance, that
has been introduced in this work, has no interference among
the walks themselves. But we have argued that there is a
quantum mechanical channel between the two walks that is

Fig. 5 Negativity between two parallel 1-D quantum walks under
Newtonian gravity, for different mass pairs. Numbers in the brackets
are the mass parameters (θ = sin−1(m/mp)) of the two states. The
initial spin states of the two walks are: a |↑〉 and b |↓〉

Fig. 6 Negativity between two parallel 1-D quantum walks under
Newtonian gravity with spin degrees of freedom traced out, for dif-
ferent mass pairs. Numbers in the brackets are the mass parameters
(θ = sin−1(m/mp)) of the two states. Blue solid lines represent the
walks with initial spin states a |↑〉 and b |↓〉. Red dashed lines repre-
sent the initial spin sates a (|↑〉 − i |↓〉)/√2 and b |↓〉

responsible for the gravitational interaction and as well as the
entanglement generation between the two particles. Figure 7
shows the effect of the noise, applied on one of the walkers
state, on the negativity between the two walkers. The reduc-
tion in entanglement is the indication of the fact that the local
interactions between the “carrier” of the gravitational inter-
action and the walk is a quantum mechanical interaction,
proving that the carrier is a quantum mechanical state.

5 Concluding remarks

We have investigated the effects of a particular model of grav-
itational interactions on the discrete time quantum walks. We
saw that the two walks get entangled with time if the inter-
action between them is mediated by a gravitational field that
can treat each component of the superposition separately.
This interaction obeys locality and since LOCC interactions
cannot generate or increase entanglement, our results sug-
gest a quantum carrier of gravitational interaction. This is
also argued by the authors of [27], wherein they suggest that
it is the off-shell graviton that is exchanged between the two

123



Eur. Phys. J. C           (2021) 81:454 Page 7 of 9   454 

Fig. 7 Effect of noise: Black solid line shows negativity between two
parallel 1-D quantum walks under Newtonian gravity with mass param-
eters (θ = sin−1(m/mp)) π/4 and π/6 with initial spin states |↓〉 and
|↑〉 respectively. Red dashed line and blue dotted line shows negativ-
ity for the same setup, with a bit-flip and phase flip noise respectively
introduced on the first state (with initial spin |↑〉) with probability p=
0.02

masses in superposition. The increase in entanglement with
time explicitly presented in this work shows the importance
of state’s expansion in position space with superposition. The
positive correlation between the rate of entanglement gener-
ation and coin parameter in the regimes where this parameter
can be seen as a mass parameter of a Dirac particle, is a very
interesting result that can further motivate the use of quan-
tum systems to probe quantum nature of gravity. Finally we
show that the introduction of noise in one of the walks results
in a reduction of entanglement which further strengthens the
argument that the interaction between the walk and the grav-
itational channel is indeed quantum mechanical.

Although we have shown the entanglement generation for
high values of mass parameters (∼ mp) for illustration, the
results hold for small masses for which superposition has
been seen in a lab. For smaller masses (∼ 10−14 kg) but
for a much larger number of steps, the entanglement might
be detectable in a lab. In addition to this, we have the free-
dom to extend the study to higher dimensional walks where
entanglement generation rate will be comparatively faster.

We acknowledge the fact that one does not know if gravita-
tional interaction does indeed remain Newtonian at the scales
we are studying them. Newton’s law of gravity has been
tested reliably only at the scales of the solar system. At higher
scales, general relativity takes over and there is no reason to
believe that it should hold at microscopic scales too [28].
However, a deeper question still remains unanswered, which
is: what is the nature of gravitational interaction for states
in a superposition of positions [16,27]? Gravity could still
be quantum mechanical and Newtonian but act in a way that
is different from our assumptions in this paper. With access
to controllable quantum systems and a carefully designed
experiments could lead to some answer in coming days.
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Appendix A: Variation of entanglement with respect to
the coin parameters

As discussed in the main text, the analytical solution for the
correction to the eigenvalue (Eq. (21)) suggest that the entan-
glement should initially increase with θ due to the sin(θ)2

term until the point when the term that is a function of sec-
ond moments of the distributions takes over. Figure 8a shows

Fig. 8 a Shows the variation of the second moment about the mean of
the probability distribution of a quantum walk, after 15 steps of the walk
with respect to the coin parameter. b Shows the effect of the sin(θ)2

factor multiplying the second moment. This shows that the positive
correlation between the mass parameter and entanglement generation
can be seen only for smaller values of the parameter
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Fig. 9 Variation of entanglement entropy with the θ parameters after
15 steps of the walk. Initial spin states are |↑〉 and |↓〉. All the figures
are the same graph from different orientations

how the second moment varies with the coin parameter for a
given walk and Fig. 8b shows the variation of the product of
sin(θ) with the second moment. In Figs. 9 and 10 we show
the variation of entanglement entropy and negativity respec-
tively with respect to the coin parameters θ1 and θ2. We see
that the entanglement increases until about θ ∼ π/3 and
decreases after that. The substitution of Eq. (15) thus gives
us a positive correlation between mass and entanglement for
small masses.

Fig. 10 Variation of negativity with the θ parameters after 15 steps of
the walk. Initial spin states are |↑〉 and |↓〉. All the figures are the same
graph from different orientations
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