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Abstract
Aromaticity is a well-known phenomenon in both physics and chemistry, and is responsible for
many unique chemical and physical properties of aromatic molecules. The primary feature
contributing to the stability of polycyclic aromatic hydrocarbons is the delocalised π-electron
clouds in the 2pz orbitals of each of the N carbon atoms. While it is known that electrons delocalize
among the hybridized sp2 orbitals, this paper proposes quantum walk as the mechanism by which
the delocalization occurs, and also obtains how the functional chemical structures of these
molecules arise naturally out of such a construction. We present results of computations
performed for some benzoid polycyclic aromatic hydrocarbons in this regard, and show that the
quantum walk-based approach does correctly predict the reactive sites and stability order of the
molecules considered.

1. Introduction

The structure and properties of benzene and other arenes has been a subject of special interest in the field of
quantum chemistry for a long time. It is now known that each of the six carbon atoms in benzene have
their orbitals hybridized into the sp2 state, and the 2pz orbitals host a delocalized π-electron cloud of the
molecule. This type of cyclic conjugated system has been a subject of significant interest in the chemical
sciences, and the description of such systems is studied under the concept(s) of (anti)aromaticity [1–5].
These molecules are characterized by their electron-rich clouds, which stabilize the structure through cyclic
resonant structures. While it is known that the delocalization does occur in the electron cloud, the
underlying physical process by which the process takes place is an open question as of yet.

In order to understand the chemical characteristics of the cyclic conjugated system, bond order of the
bonds in the system is studied. Bond order is a widely used concept in chemical sciences, and works as a
tool to help predict chemical behavior. Certain reactions can take place only for bonds of certain order (e.g.
electrophilic and nucleophilic substitution reactions can only occur for bond order �1). It can also help in
explaining the reactive tendencies of some molecules by consideration of the sum of bond order [6] of the
atoms preferred by the molecule. The strength of a chemical bond depends on two things—the degree of
overlap between the interacting orbitals, and the difference in energies of the atomic orbitals involved in
bonding, which is reflected by bond polarity. The bond polarity is used to qualify the ionic nature of the
bond, while the degree of overlap quantifies its covalent nature [7, 8].

A comprehensive method to calculate bond order from first principles was only available in 2017 [9]. As
we investigate polycyclic aromatic rings in this work, we can use a slightly simpler method that relies on the
system’s geometry. It requires a basis relative to which bond order can be calculated. We make the
traditional choice of C–C single bond in ethane (H3C–CH3) to have bond order 1, and the C = C double
bond of ethene (H2C = CH2) to have a bond order of 2. This gives us a quantity known as relational bond
strength order (RBSO) [10], and provides a robust description of bond strength as long as the
Born–Oppenheimer approximation is valid. This provides a useful tool to study the bonds in an aromatic
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molecule, as a bond with bond order closer to 1 would have characteristics that are closer to a single bond,
but in a bond with order closer to 2, the double-bond characteristics will dominate.

With advancements in the field of quantum information and computation, a quantum walk has
emerged as one of the most efficient ways to model the controlled dynamics of quantum states and
quantum particles [11–15]. The quantum walk can be regarded as a quantum counterpart of random walks
which have served as an efficient way to model dynamics defined by classical physics. Therefore, it is natural
to explore the potential of quantum walk to model quantum dynamics in the range of physical systems
where quantum physics plays a defining role.

Quantum walks can be described in two main formalisms—the discrete-time quantum walk (DTQW)
and the continuous-time quantum walk (CTQW). The dynamics of DTQW require a coin and a position
Hilbert space in order to be defined, however, CTQW dynamics can be defined with only a position Hilbert
space. A quantum walk spreads quadratically faster than a classical walk on its position space and its
dynamics can be engineered using a set of evolution parameters, and therefore it has been used as a basis for
design and implementation of quantum algorithms and quantum simulations [16–29], to study problems
such as graph isomorphism [30], quantum percolation [31–33], and to develop schemes for
implementation of universal quantum computation [34, 35], among others. Quantum walks are thus very
versatile tools indeed, and their practical significance has been demonstrated by way of implementation in
many quantum systems, such as NMR [36], integrated photonics [37–39], ion traps [40, 41], and cold
atoms [42].

Modeling the dynamics of the FMO complex using quantum walks is one of the important works
reported [22, 43] in the direction of using quantum walks for modeling quantum dynamics in physical
systems. However, not much progress has been reported in modeling of dynamics in chemical systems
beyond FMO complex despite various algorithms having been proposed for using quantum walks for
several computational tasks. Quantum simulation of dynamics in chemical complexes is one of the
promising applications envisioned using quantum computers, and quantum algorithms using quantum
walks could play an important role in that direction.

In this work, we will make use of both the DTQW and CTQW formalisms in order to study the
structure, stability, and the relative chemical reactivity of different sites when exposed to an electrophile for
each of the molecules considered. We also qualitatively establish that the order of stability of the molecules
arises naturally from a quantum walk-based framework. We thus propose the hypothesis that the electrons
in the 2pz orbitals delocalize in the π-electron cloud via a quantum walk.

The paper is divided into six sections. In section 2, we discuss the DTQW and CTQW, and elucidate
briefly the specific variants of the quantum walks used in this work. A quick recap of the concepts of relative
bond strength order is given in section 3, and the methods we use to model the dynamics in aromatic
hydrocarbons are detailed in section 4. We present our results in section 5, and conclude in section 6.

2. Quantum walk

2.1. Continuous-time quantum walk
A quantum walker performing CTQW has its position space defined by a graph Γ(V, E), where V is the set
of its vertices and E the set of edges. Given the cardinality of V = |V| = N, |E| � N(N−1)

2 . Let A be the
matrix defined as,

Aij :=

{
1 edge (i, j) ∈ E

0 otherwise
. (1)

A, defined as such on Γ, is known as the adjacency matrix of the graph, and offers a representation of
Γ itself. It is a real-valued matrix, and the vertices are labeled by the computational basis states
{|1〉, |2〉, . . . , |N〉}. The quantum state of the entire graph is defined at an arbitrary point of continuous
time t by the wavefunction |ψ(t)〉, which is defined as,

|ψ(t)〉 =
N∑

l=1

αl|l〉 αl ∈ C. (2)

The CTQW is a quantum process, and thus obeys the Schrödinger equation,

i�
∂

∂t
|ψ(t)〉 = HΓ|ψ(t)〉, (3)

while its classical counterparts obey the Markovian master equation. The Hamiltonian HΓ used in the
expression of the Schrödinger equation is given by,
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HΓ = γL = γ(D − A),

=⇒ HΓij =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
−γ i �= j, (i, j) ∈ E

0 i �= j, (i, j) /∈ E

diiγ i = j,

.
(4)

Here D is a diagonal matrix, and each diagonal element djj corresponds to the degree of vertex j. γ is a
constant, A is the adjacency matrix (defined as in equation (1)), L is known as the Laplacian of Γ, and γ is
the rate of transition for the graph.

It may be observed from the expression in equation (4), that HΓ is independent of time, and thus the
solution to equation (3) is given by the time evolution operator U, and may be expressed as,

U = e−iHΓt ,

|ψ(t)〉 = U|ψ(0)〉,
(5)

where the expression of ψ is in the units of �. Since the adjacency matrix A is always real and symmetric,
due to it representing an undirected graph, so is the Hamiltonian—which ensures that U is necessarily a
unitary operation.

The coefficients γ in the Hamiltonian in equation (4) are rates of transition between different nodes.
Traditionally, in unweighted graphs, the rates are all normalized to 1. In the case of arenes, however, we use
the values of RBSO as mentioned in the beginning of this paper in section 1, and formally defined in
section 3 as the values of the weights of the graph. This corresponds to how easily the electrons are able to
move across the bonds, and physically represents a measure of the bond length, as bonds of higher order are
shorter.

2.2. Discrete-time quantum walk
The quantum evolution of a walker executing a DTQW on a one-dimensional lattice may be described on a
Hilbert space H = HC ⊗HP, where HC and HP are coin and position Hilbert spaces, respectively. The coin
space in this case is a two-dimensional space, and thus its basis set can be assumed to consist of two vectors
|↑〉, |↓〉, such that they are mutually orthogonal. The coin space represents a Hilbert space which is internal
to each walker. The position space is an infinite-dimensional Hilbert space with the basis chosen to be the
set {|x〉|x ∈ Z}. Each vector |n〉 represents the site x = n in the position space.

The initial state of the walker is therefore represented as a tensor product of its states in the two spaces,
and may be written in the form shown in equation (6)

|ψ(0)〉 =
(
α|↑〉+ β|↓〉

)
⊗ |x = 0〉, where |α|2 + |β|2 = 1. (6)

Here, α,β ∈ C are amplitudes of the walker’s internal coin states. The evolution is defined as a unitary
operation in the coin space, followed by a coin-dependent shift operator in the position space. Both the
operators are unitary operations, and a typical DTQW evolution with a single-parameter coin is described
as,

|ψ(t)〉 = (Sx (Cθ ⊗ 𝟙))t |ψ(0)〉,

where,

Cθ =

[
cos(θ) −i sin(θ)

−i sin(θ) cos(θ)

]
, and

Sx =
∑
x∈Z

[
|↑〉〈↑| ⊗ |x ± a〉〈x| + |↓〉〈↓| ⊗ |x ± b〉〈x|

]
, (7)

Where (a, b) ∈ R represent the amount of shifting in the position space experienced by the component in
the eigenspaces corresponding to |↑〉 and |↓〉 respectively.

As can be seen from equation (7) the shift operation effects the traversal of the components of the
probability amplitude in different directions. In order to obtain the order of reactivity of sites, the algorithm
in [28] requires a variant of DTQW known as a directed DTQW (D-DTQW) [45]. In case of the D-DTQW,
the shift operator only allows a single component of the probability amplitude to traverse the graph. Thus
depending on which component is allowed to traverse the graph, the D-DTQW shift operation may be
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defined in one of the two ways,

S± =

⎧⎪⎨
⎪⎩
∑

x

|↑〉〈↑| ⊗ |x ± 1〉〈x| + |↓〉〈↓| ⊗ |x〉〈x|∑
x

|↑〉〈↑| ⊗ |x〉〈x|+ |↓〉〈↓| ⊗ |x ± 1〉〈x|.
(8)

The coin operation for the node-ranking algorithm has the same form as Cθ , however, it uses a position
dependent form which may be expressed as,

Ĉ(θ)x =
∑

x

C(θ) ⊗ |x〉〈x|.

This operation is also a special unitary matrix, similar to the Cθ defined for the DTQW in equation (7). In
case of the procedure to arrange the nodes in order of reactivities, we use a specialized coin operation of the
form defined in reference [28],

C =
∑

x

⎡
⎢⎢⎣
√

1

αx + 1

√
αx

αx + 1√
αx

αx + 1
−
√

1

αx + 1

⎤
⎥⎥⎦⊗ |x〉〈x|, (9)

were αx is the proportion of the incoming weight with respect to the total incoming and outgoing weights
at the node represented by |x〉. In this case, the incoming and outgoing weights are equal as the graph is
undirected, hence the expression for αx may be simplified to αx =

dx
2 , where dx represents the degree of

node |x〉.
The shift operator used to implement the algorithm is defined as

SNR =
∑
x∈Z

[
|↑〉〈↑| ⊗ |x〉〈x| +

∑
k

[
Ukx|↓〉〈↓| ⊗ |k〉〈x|

]]
, (10)

where k ∈ Z, and Ukx is a unitary matrix that restricts the walker to Markovian jumps between specific
nodes in the position space. Since the coin operator rotates between the ‘stored (ψ↑

c )’ and ‘traveling (ψ↓
c )’

components of the probability distribution ψc =

[
ψ↑

c

ψ↓
c

]
, it results in different amounts of storage at different

nodes, depending on the amount of information that passes through them, generating a ranking of the
nodes. The position space in this case is the graph Γ(V, E) with the set of nodes V and edges E. The
adjacency matrix A of this graph is defined as aij = RBSO(i, j), where RBSO(i, j) is the relative bond
strength order of the bond between the ith and jth carbon atoms in the molecule under consideration, as
defined in section 3.

3. Relative bond strength order

Many computational approaches to calculate bond order exist, however, most have severe fundamental
limitations. Approaches requiring categorization of electrons to be spin-up or spin-down fail to achieve
universality as they cannot describe noncollinear spin magnetism. Some methods consider bond order to be
an explicit functional of the total electron density and spin magnetization density functions. However, in
the limit of a complete basis set, the density matrix is an overcomplete representation of the distribution of
electron density. Thus, a functional of the density matrix may not necessarily be a functional of the electron
density. This causes the bond order results to be inconsistent across different quantum chemistry methods,
even if they yield the same electron density, spin magnetization density, and energy [44, 46]. This
dependence renders this particular kind of formulation unphysical.

Other approaches that can be used in its stead include Wheatley–Gopal and Laplacian correlations
between overlap and bond order [47, 48], Mayer bond index [49] and first order delocalization index [50]
applied to density-based charge partitions, natural bond orbital [51], adaptive natural density partitioning
[52, 53], among others.

In this work, we shall consider electron delocalization in benzoid polycyclic aromatic systems,
specifically the C–C conjugated double bonds in benzene, naphthalene, anthracene and phenanthrene.
Since all the bonds under consideration are C–C bonds, we can use a relative bond strength order [54]
(hence called bond order) here. We determine the bond order by using experimentally determined
vibrational frequencies of the bonds [55–57] to calculate the force constant matrix. We then find the local

4



New J. Phys. 23 (2021) 113013 P Chawla and C M Chandrashekar

Table 1. Table showing the values of bond order
obtained for various bonds in polycyclic aromatic
molecules considered in this work. The atom numbers
in the ‘carbon atoms’ column correspond to the
respective carbon atoms of the molecules, marked as
shown in figure 1.

Benzene

Carbon atoms Bond order

C1, C2 1.468
C6, C1 1.468
C2, C3 1.468
C3, C4 1.468
C4, C5 1.468
C5, C6 1.468

Naphthalene

Carbon atoms Bond order

C1, C2 1.339
C1, C10 1.603
C2, C3 1.603
C3, C4 1.335
C4, C5 1.335
C4, C9 1.288
C5, C6 1.603
C6, C7 1.339
C7, C8 1.603
C8, C9 1.335
C9, C10 1.335

Anthracene

Carbon atoms Bond order

C1, C2 1.295
C1, C14 1.673
C2, C3 1.673
C3, C4 1.304
C4, C5 1.452
C4, C13 1.246
C5, C6 1.452
C6, C7 1.304
C6, C11 1.246
C7, C8 1.673
C8, C9 1.295
C9, C10 1.673
C10, C11 1.304
C11, C12 1.452
C12, C13 1.452
C13, C14 1.304

Phenanthrene

Carbon atoms Bond order

C1, C2 1.391
C1, C14 1.571
C2, C3 1.553
C3, C4 1.348
C4, C5 1.204
C4, C13 1.315
C5, C6 1.348
C5, C10 1.315
C6, C7 1.553
C7, C8 1.391
C8, C9 1.571
C9, C10 1.367
C10, C11 1.291
C11, C12 1.762
C12, C13 1.291
C13, C14 1.367
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Figure 1. A description of the benzoid polycyclic aromatic molecules considered in this study. The labels refer to the respective
carbon atoms. The figures show the following molecules—(a) benzene, (b) naphthalene, (c) anthracene, and (d) phenanthrene.

modes of vibration that correspond to specific bonds, and thus obtain local stretching modes [58, 59],
which can be used to design a sensitive measure of bond strength.

Briefly, the method proceeds as follows. We calculate the force constant matrix corresponding to the
complete set of vibrational frequencies of the molecule under consideration by Wilson’s GF method [60].
The internal degrees of freedom ({q1, . . . , q3N−6}) describing the potential energy surface (PES) in an
optimal manner are often nonlinear, so it is assumed that the displacements with respect to the internal
coordinates are small. This enables linearization of the internal coordinates as the set {Qi}, where
i = 1, . . . , 3N − 6. A PES V can be expanded in a Taylor series around its minima in terms of {Qi}, and the
force derivative matrix F is then given by the Hessian of V. The first term in the Taylor expansion is adjusted
with the zero point energy and the second term vanishes due to the evaluation at minima.

Thus, we obtain the relation,

V ≈ 1

2

3N−6∑
i,j=1

FijQiQj, (11)

which can then be compared with the classical vibrational kinetic energy of the form,

2T =

3N−6∑
i,j=1

gij(q)Q̇iQ̇j, (12)

where gij is an element of the metric tensor of the internal curvilinear coordinates, and Ȧ ≡ ∂A
∂t . Evaluating

the metric tensor g in the minimum q of the PES V gives the Wilson’s G-matrix,

G = g(q)−1. (13)

This leads us to Wilson’s equation, given by

GFD = DΛ, (14)

where F is the force constant matrix in terms of the internal coordinates ({qi}3N−6
i=1 ), D is the matrix of

vibrational eigenvectors dμ, each of which forms one of its columns, G is the Wilson matrix from
equation (13), and Λ is a diagonal matrix consisting of the eigenfrequencies (normal modes) corresponding
to dμ.

Diagonalizing F with D, we obtain the force constants corresponding to each local mode as,

kμ = dμK−1d†
μ, where K = D†FD. (15)

In this work, we use the vibrational frequencies as listed in [55] to calculate our force constants.
According to the extended version of Badger rule [61], the bond order can be calculated from a power
relationship between it and local mode corresponding to each bond. We use the CC bonds in ethane and
ethene as having bond orders 1 and 2, respectively, which fixes the relationship between bond order and the
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Figure 2. An illustration of the different possible delocalization modes for each of the benzoid polycyclic aromatic hydrocarbons
considered in this work. Figure (a) illustrates the only possible delocalization mode for benzene, (b) and (c) depict the two
possible ways by which naphthalene can delocalize. The possibilities for anthracene are depicted in figures (c)–(e), and those for
phenanthrene are represented in (g)–(i).

local vibrational mode force constants as [54],

BO = 0.29909(kμ)0.86585. (16)

It may be noted that the bond order of a bond that does not exist in the molecule is by definition
considered to be zero. In table 1, we show the bond order values corresponding to the different C–C bonds
as per figure 1.

4. Methods

In this section, we consider the behavior of the π-electrons in the aromatic system. The behavior of the
delocalised electrons in the conjugated system is modeled in the form of quantum walk. We will use both,
the CTQW and DTQW formalisms to model the electrons’ behavior. We will use the CTQW to model the
delocalization process in order to obtain results relating to delocalization modes and stability of the
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Figure 3. The evolution of the probability distributions of the different walkers in the network representing benzene, with the
position basis superimposed on a plot of the benzene ring for easier visualization. Each walker is represented by a different color.
The evolution in case of benzene exhibits an oscillation about the initial state.

molecule, and the DTQW is employed in an algorithmic form defined in [28] to rank sites of the molecule
in order of their reactivity toward an electrophile.

In both the quantum walk formalisms, the molecules we have considered are modeled as a graph
Γ(V, E), where V is the set of its nodes and E the set of edges. Only the bonds and carbon atoms that form
the conjugated system are included in the sets E and V, respectively. The graph is represented in the form of
its adjacency matrix, and the weight of edge is defined to be its bond order, as it represents the ease by
which an electron may traverse the graph, thus qualitatively describing the ease by which an electronic
wavefunction may delocalize over the bond. The graphs corresponding to each molecule are illustrated in
figure 1.

The π-electrons are modeled as independent, noninteracting quantum walkers that are free to delocalize
over this graph. The interelectronic interactions between delocalized π electrons in a polycyclic aromatic
system are primarily nearest-neighbor pairwise interactions. They are taken into consideration when the
bond order is calculated, as the electrons find it easier to delocalize over a shorter bond, i.e. a bond with a
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Figure 4. The evolution of the probability distributions of the different walkers in the network representing naphthalene, with
the position basis superimposed on a representation of the network representing naphthalene. Each walker is represented by a
different color.

higher bond order in general. Thus, the quantum walk dynamics of the electrons can be assumed
independent of each other, subject to the constraint that edge weights must take into account the effect of
appropriate pairwise interactions along the network.

In the CTQW study, we consider the state of the system after some time t, and look at the probabilities
of finding some electron at a particular position and its variation with time. This gives us a general idea of
the dynamics of the delocalizing electronic wavefunctions. We also look at how the maximum probability of
any electron to exist at a particular position, hereafter called MAXP, varies over time. It is defined for each
position basis vector as the maximum probability of a single electron to exist at that particular basis vector
in the position space. A high mean value here indicates that one of the π-electrons is regularly found here,
and therefore is evidence of localization, indicating that at least one of the π-bonds connecting the
considered vertex has a higher bond order, i.e. it is not a dominant part of the delocalization mode of the
molecule, and thus has a higher double-bond character. A lower value, on the other hand, corresponds to
the fact that all the bonds at the considered vertex are involved in delocalization. This study helps to
ascertain the bond delocalization mode of each molecule out of several possible choices, as illustrated in
figure 2.

We also consider the truncated mean of this data as a variable called TRP, in which we discard the
highest and lowest values of the probability, and calculate the mean of the remaining probabilities at a
particular position over time. This measure discards the outlier(s) created by electrons that may localize,
and provides a reasonable qualitative description of where the wavefunction is likely to exist. This provides a
way to qualitatively characterize the reactivities of the various molecules, and also a way to arrange them in
order of their reactivities. A higher value of TRP implies the electronic probability distribution often has a
peak at certain places, which provides an estimate of the likelihood of an electron being present at a certain
point in the chain—thus qualitatively estimating the availability of that site to form chemical bonds.

9
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Figure 5. The evolution of the probability distributions of the different walkers in the network representing anthracene, with the
position basis superimposed on a representation of the network representing anthracene. Each walker is represented by a
different color.

The DTQW formalism characterizes the symmetries of the considered graph with respect to a diffusing
quantum particle. The DTQW-based algorithm used [28] requires a coin Hilbert space mapped to the
connections in structure in addition to the position Hilbert space for its implementation, and estimates the
ability of each site to accumulate information as a quantum particle diffuses across it. This provides a
qualitative estimate of site activities, and thus enables a qualitative overview of the behavior of the
conjugated system in the presence of an electrophile.

5. Results

5.1. Evolution of probability with time
In this subsection, we take a look at the evolution of the probability of each electron to exist at different
points for each molecule as a function of time. This shows an oscillatory behavior symmetric about the
initial state in the case of benzene, one period of which is shown in figure 3

It is clear from figure 3 that over time, the walkers diffuse on the network representing benzene, as
illustrated in figure 1(a) in an oscillatory manner, with a period of 12.60. The total probability of finding an
electron at a particular position is always unity, however, as can be seen from figure 3, it is always uncertain
which electron is detected, in accordance with the concept of indistinguishability of electrons. The
probabilities corresponding to each electronic wavefunction are also verified to sum to unity over all
positions. This may be derived from the fact that the results for this calculation may be expressed as a
bistochastic N × N matrix B. The jth row of B represents the probability of the jth walker to be found at each
of the N sites.

Unlike the behavior for benzene, the walkers on the network representing naphthalene do not display
any oscillatory behavior, and only partially localize in time. There is significantly more delocalization as
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Figure 6. The evolution of the probability distributions of the different walkers in the network representing phenanthrene, with
the position basis superimposed on a representation of the network representing the phenanthrene molecule. Each walker is
represented by a different color.

compared to benzene, however, the total probability of finding an electron at any position point is always
unity. This is clearly illustrated in figure 4.

Similar to the case of napthalene, the electrons in the case of anthracene and phenanthrene also do not
have any oscillatory behavior. A few snapshots of the state of the two systems are shown in figures 5 and 6.
It may be seen qualitatively by inspection that the walkers in the case of phenanthrene (figure 6) display
significantly more mixing in the position basis than the case of anthracene (figure 5), thus alluding to the
fact that phenanthrene is more stable than anthracene. This idea is further developed and illustrated in
figure 10.

5.2. Reactivity of sites
In this subsection, we look at the results obtained upon application of the DTQW-based algorithm. This
analysis takes into consideration a single quantum walker diffusing over the entire network through a
directed variant of the DTQW, and generating an ordered arrangement, i.e. ranking, of the nodes. This
ordered arrangement is based on the amount of information passing through each node. The algorithm
used is invariant of the starting position of the walker in case of a finite network over sufficient run-times,
and thus it is only necessary to run it for a single walker.

The sites in figure 7 are numbered according to the scheme illustrated in figure 1. From figure 7(a), it is
apparent that each of the benzene sites are equivalent, and hence an electrophilic substitution is equally
likely to occur at any of the carbon atoms. This is the same result as obtained by symmetry—the benzene
molecule has D6h symmetry, and thus each of its carbon atoms and the bonds in the network are equivalent.
This is not the same case, however, for naphthalene (three unique sites, D2h symmetry group), anthracene
(four unique sites, symmetry group D2h) and phenanthrene (six unique sites, C2v symmetry group). In each

11



New J. Phys. 23 (2021) 113013 P Chawla and C M Chandrashekar

Figure 7. Results of applying the node-ranking algorithm from [28] on each of the networks representing the different
molecules. The sites which are equivalent have the same ranks, and therefore the same reactivity. The plots in (a)–(d) show the
results of the algorithm when applied to networks representing benzene, naphthalene, anthracene and phenanthrene molecules,
respectively.

case, a lower rank for a particular implies a higher probability of an electrophilic substitution occurring at
that site. Physically, this corresponds to the fact that the position most likely to be substituted by an
electrophile has the least information passing through it. The reaction, therefore, tends to occur via the
pathway causing the least loss of information in the molecule, as is expected by the second law of
thermodynamics.

These observations are also in line with the fact that an electrophile would preferentially create a
substituted aromatic compound at site C3 for naphthalene (or equivalently, at sites C5, C8 or C10). It also
explains naturally the tendency of anthracene to form substituted compounds at equivalent locations
C5 and C12, as well as the high tendency of electrophilic substitutions at C11 and C12 in the case of
phenanthrene.

5.3. Delocalization modes
In this section, we take a look at the variation of maximum probability of an electron to exist at a particular
site (MAXP), for each unique site in the molecule. For the benzene molecule, only the vertex 1 is unique,
and all others are equivalent sites. In case of the napthalene, vertices 4, 6 and 10 are unique. Anthracene and
phenanthrene, despite having the same number of sites, have different numbers of unique sites due to their
structures. In case of anthracene, sites 2, 5, 11 and 14 are unique, while in case of phenanthrene, the unique
sites are the ones labeled 1, 2, 3, 9, 10 and 13. In figure 8, we show a plot showing how the quantity MAXP
varies with time. We have only plotted this for positions that are unique. Every equivalent position has the
same curve, and the same mean. The values are sampled at a time interval of every 0.01 units.

From figure 8, we observe that the plot for benzene (figure 8(a)) shows a periodic behavior, while the
others do not show any periodicity as such. The mean values for each position are plotted in figure 9.
Through a representation of the mean value of MAXP measured over time, figure 9 essentially presents a
way of looking at the bond delocalization mode of the different bonds in the molecule. A vertex with a high
mean value implies there is at least one higher-order bond at the corresponding site on the molecule, while
a vertex with a lower value implies all the bonds at the corresponding site have delocalized.
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Figure 8. Variation of MAXP with time at every node on each network considered in this work. The plots in (a)–(d) depict the
results obtained when applied to networks representing benzene, naphthalene, anthracene and phenanthrene molecules,
respectively. A large amount of dynamical variation is observed, however, the mean values are plotted with dotted lines. The plot
for benzene shows a periodic variation, as expected.

Figure 9. Mean of MAXP for every node of each network considered in this work, averaged over 200 units of time, sampled at
every 0.01 units. The plots in (a)–(d) show the results obtained when applied to networks representing benzene, naphthalene,
anthracene and phenanthrene molecules, respectively. As expected, the plot for benzene shows that every site is equivalent.

This enables us to verify the delocalization mode for each of the molecules. Benzene has only one
possible pattern shown in figure 2(a), but naphthalene prefers to exist in the pattern depicted in figure 2(c).
Similarly, anthracene prefers to exist in a mixture of the patterns shown in figures 2(d) and (f), however, the
pattern in figure 2(d) is slightly more dominant. In the case of phenanthrene, the dominant arrangement is
that of a biphenyl unit connected by a bridge, illustrated in figure 2(i), mixed with the slightly less preferred
peripherally delocalized pattern shown in figure 2(g).

5.4. Order of stability
The final metric that we have considered is the truncated mean of the probabilities of the electrons to exist
at various positions, also known as TRP. The plots of TRP for unique (i.e. inequivalent) positions for each
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Figure 10. TRP of the probability of an electron to exist at a particular site on each molecule, plotted for 200 units of time,
sampled at every 0.01 units. The plots in (a)–(d) depict the results obtained when applied to networks representing benzene,
naphthalene, anthracene and phenanthrene molecules, respectively. The dotted line shows the mean value of the plot, averaged
over time.

molecule are shown in figure 10. Just as the case of MAXP, a lot of dynamical variation can be observed,
however, a higher mean value here implies that electrons do not fully localize at that position, even for a
very small time, and the position is a part of the delocalized cloud. A higher TRP over all the positions also
implies the species is more stable overall as all bonds tend to have a higher degree of delocalization, and a
consequently a higher resonance energy. It thus naturally gives rise to the known stability order of the four
aromatic molecules considered, i.e. benzene > naphthalene ∼ phenanthrene > anthracene.

6. Conclusion

We have studied the structure and properties of four benzoid polycyclic aromatic hydrocarbons using
quantum walks. We have characterized the evolution of the probability of finding electrons at different
points, and developed metrics with the help of which we are able to qualitatively understand the structure
of these molecules. We also use some of the developed metrics to characterize the chemical properties of
these molecules, namely, the characterization of the electron-rich sites in the structure, which are
preferentially targeted by electrophiles in solution. We are also able to perform a relative stability analysis of
these species, and our results agree with the previously established results from chemical studies.

This work also proposes a formalism in the analysis of aromatic compounds, wherein the quantum walk
is the fundamental physical process by which electrons diffuse in the delocalized π-electron cloud. This has
applications in simulations of chemical reactions via quantum simulators and/or quantum computers
capable of realizing quantum walks on networks. For smaller molecules, the calculations may be done on a
classical computer as well, making this formalism accessible to both classical and quantum computing
paradigms. We aim to extend this analysis to non-planar molecules, as well as substituted aromatic
molecules. This approach also prompts the use of machine learning techniques, such as deep neural
networks, in order to calculate the bond orders by heuristic data such as the one generated by the
node-ranking algorithm.
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