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Symmetrically evolving discrete quantum walk results in dynamic localization with zero mean
displacement when the standard evolution operations are replaced by a temporal disorder evolution
operation. In this work we show that the quantum ratchet, that is, a directed transport in standard
and disordered discrete-time quantum walk can be realized by introducing a pawl like effect using a
fixed coin operation at marked positions different from the one used for evolution at other positions.
We also show that the combination of standard and disordered evolution operations can be optimized
to get the mean displacement of the order ∝ t (number of walk steps). This model of quantum ratchet
in quantum walk is defined using only a set of entangling unitary operators resulting in the coherent
quantum transport.

I. INTRODUCTION

Transport phenomenon through ratchet action is one
of the active areas of research interest [1–3]. Ratchet as
a device allows motion in one direction while restricting
the motion in the opposite direction. Ratchet action or
ratcheting is in general a directed transport using an un-
biased energy produced by some source such as chemical
action in biological motors. The literature on ratchet
action dates back to the thought experiment of Feyn-
man and Smoluchowski [4], where a periodic and spatially
asymmetric system, in contact with a single heat bath
was expected to extract work from random fluctuations
(heat), apparently contradicting the second law of ther-
modynamics. They pointed out that, if only equilibrium
fluctuations are acting, then there would be no directed
motion in accordance with the second law of thermody-
namics. Therefore the system has to be driven out of
equilibrium by some additional deterministic or stochas-
tic perturbations. These perturbations are taken to be
unbiased, that is, their time, space and ensemble averages
are zero. Along with that, if the spatial symmetry of the
system is broken (most commonly, this is done by involv-
ing the so-called ratchet potential, which is periodic with
broken spatial symmetry), then these two conditions are
sufficient to have a directed transport even without a net
force in a spatially periodic system. These type of ratchet
systems with thermal noise are called Brownian motors.
There are also other kinds of ratchets in absence of ther-
mal noise. They are either chaotic dynamical dissipative
ratchets or purely Hamiltonian ratchets. Symmetry anal-
ysis allows one to figure out necessary conditions (not
sufficient) for directed transport in these systems. These
symmetry analysis shows that we must have some bro-
ken symmetries to have ratchet action. Its application to
understand the directed dynamics in different fields rang-
ing from biological systems to quantum mechanical sys-
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tem [1–3, 5, 6] has continued to entice interest to explore
new ratchet designs which can effectively model trans-
port processes in various classical and quantum systems.
In this paper, we present a model for quantum ratchet

which will mimic our conventional model of ratchet as
a device, in both ordered and disordered discrete-time
quantum walk (D-DQW) system. Each step of DQW
evolves a particle into superposition of position space and
for certain configuration of the initial state and param-
eter defining the evolution operators [7] the wave-packet
spread symmetrically on both sides of the initial position.
Compared to the classical random walk, the spread of the
probability distribution for DQW is quadratically faster
and this has resulted in the use of quantum walks as a
tool for various quantum algorithms [8–10]. However, a
spreading wavepacket has been shown to localize dynami-
cally around the initial position in space when the param-
eter in the coin operation are randomly changed for each
step, that is, temporal disorder [11],[12]. Since temporal
disorder is homogeneous over the lattice space and evolu-
tion is symmetric over time, there is no directed impulse
on the wave-packet resulting in a zero mean displace-
ment in position space. Therefore, engineering quantum
ratchet in D-DQW can play an important role in engi-
neering quantum transport in disordered systems and to
explore new models to understand directed transport in
various discrete two-level quantum systems. To produce
ratchet effect in D-DQW we mark a position in posi-
tion space and for that marked position we introduce a
fixed coin operation different from the one used for rest
of the position. The fixed coin operation at the marked
position will effectively act as a pawl. This will break
the symmetry in the position space and gives rise to the
directed transport of the wavepacket in the desired di-
rection. We will show that the rate of directed transport
can be optimized to transport the quantum state with
the mean displacement of up to the order proportional
to the number of steps of the walk (t). Even without any
optimization, the mean displacement in position space is
noticeably higher over the earlier known ratchet model in
DQW without disorder [13]. One of the important aspect
to note in our model is the absence of decohering noise,
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that is, the complete dynamics including the pawl effect
is defined by the entangling unitary operators. There-
fore, the ratchet in DQW will be very useful for coherent
quantum transport.
The paper is organized as follows. In section II we

present the dynamics of DQW and show the localization
effect with temporal disorder. In section III we present
a scheme to introduce quantum ratchet in DQW and
show the directed transport using different configuration
of evolution. In section IV we discuss the effect on entan-
glement during the directed transport and conclude with
discussion in sectionV.

II. DISORDERED DISCRETE-TIME QUANTUM

WALK AND DYNAMIC LOCALIZATION

Discrete-time quantum walk (DQW) is a quantum ana-
log of classical random walk in discrete space, and time
[14–16]. The evolution of the walk is described on a
Hilbert space composing of a coin Hilbert space Hc =
span

{

|↑〉 = (1 0)T , |↓〉 = (0 1)T
}

and a
position Hilbert space Hx = span{|x〉 : x ∈ aZ}. The
joint state of the system at any time t is given by,

|Ψ(t)〉 = 1√
2

[

|↑〉 ⊗ |Ψ↑(t)〉+ |↓〉 ⊗ |Ψ↓(t)〉
]

∈ Hc ⊗Hx (1)

where, |Ψ↑↓(t)〉 = ∑

x

α↑↓
x (t) |x〉 , α↑↓

x (t) ∈ C.

Each step of walk evolution is given by a unitary evo-

lution operator W ( ~θ ), which is a composition of coin
operation B(θ) on a coin space followed by a coin state
dependent spatial shift operation S [19]. For our choice

of ~θ = (θ, 0, 0), the coin operation is described by,

B(θ) = e−i~θ.~σ =

(

cos θ −i sin θ
−i sin θ cos θ

)

(2)

and the shift operation is given by,

S =
∑

x

|↑〉 〈↑| ⊗ |x− a〉 〈x|+ |↓〉 〈↓| ⊗ |x+ a〉 〈a| . (3)

We can see that the operationB(θ) evolves the qubit (any
two-level system) to the superposition of the basis states
and the operation S evolves the particle in superposition
of position space. The single step DQW operator looks
like,

W (θ) ≡ S
[

B(θ) ⊗ Ix

]

, (4)

where Ix =
∑

x

|x〉 〈x|. Instantaneous state of the whole

system, |Ψ(t+ τ)〉 = W (θ) |Ψ(t)〉 ∀ t or, |Ψ(t)〉 =
[

W (θ)
]

⌊

t
τ

⌋

|Ψ(0)〉 where τ is the time taken for evolv-
ing each step of the walk.
Using the definition of translation operator,

∑

x

|x± a〉 〈x| = e∓
ip̂a

~ =
∑

k

e∓
ika
~ |k〉 〈k| , where k is an

eigenstate of the momentum operator p̂ : p̂ |k〉 = k |k〉,
we can derive the effective Hamiltonian of the system

according to the definition, W = exp
(

− i Heff τ
~

)

,

Heff = Ic ⊗
~ cos−1

(

cos θ cos p̂a
~

)

τ
√

Ix − cos2 θ cos2 p̂a
~

[

− σ3 ⊗ cos θ sin
p̂a

~
− σ2 ⊗ sin θ sin

p̂a

~
+ σ1 ⊗ sin θ cos

p̂a

~

]

(5)

where, Ic = |↑〉 〈↑|+ |↓〉 〈↓|. Effective energy eigenvalues
E±

k of the Hamiltonian in Eq. (5) are,

E±
k = ±~

τ
cos−1

(

cos θ cos
ka

~

)

∀ k ∈
[

− π~

a
,
π~

a

]

.

The group velocity is calculated as,

v±g (θ, k) =
∂E±

k

∂k
= ±a

τ

cos θ sin ka
~

√

1−
(

cos θ cos ka
~

)2
. (6)

The group velocity can be related to the probability dis-
tribution of walk [17]. For a given θ one can find the
value of k for which the peak in the probability distribu-
tion is known to appear at position ±t cos θ [7, 18] using
the relation,

|v±g (θ, k) t| = | ± t cos θ|. (7)

It was first predicted by Anderson [20] that potential
energy disorder can cause localization in crystals. Later
it was experimentally shown to be true and theoretically
verified in a variety of systems [21]. Spatial disorders ac-
tually mimics spatial defects present in the media. If we
consider the defects to be random, we can easily mimic
the situation by introducing some random spatial disor-
der and this will lead to localization. However, defects
are not always present in the medium (spatial) alone, ran-
dom disturbances, which means, temporal disorders can
be a source of defects in the evolution. This is taken into
account by having some randomly chosen disturbance in
the evolution of the system and this also is know to gives
rise to localization (dynamic). Similar to the above re-
sults we also expect localization of the quantum wave-
packet in DQW with disordered environments in both
space and time [22].
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FIG. 1: Probability distribution of standard DQW (with
θ = π/4) and DQW with temporal disorder after 200 steps
of evolution. The initial state chosen for both the evolu-
tion, |Ψ(0)〉 = 1√

2

(

|↑〉 + |↓〉
)

⊗ |x = 0〉. For standard DQW,

symmetric spread of wavepacket in both the direction is seen
whereas, for D-DQW the wavepacket is localized around the
origin.

In this work we will only consider temporal disorder
DQW (D-DQW) for our study. For introducing disor-
der in time we vary the coin parameter θt randomly
in each evolution of the walk. This temporal disorder
gives rise to localization of the wave packet in position
space [11], [12], [22]. Figure 1 depicts the comparison of
probability distribution in position space between the
standard DQW and D-DQW. For the coin operationB(θ)
we have chosen, we get symmetric distribution when the
initial state is |Ψ(0)〉 = 1√

2

(

|↑〉+ |↓〉
)

⊗ |x = 0〉. There-

fore, for all our study in this work we use |Ψ(0)〉 as the
initial state so that there is no biasing of the distribution
due to the initial state. The localization under temporal
disorder in the figure can also be explained by the con-
cept of group velocity of a wave-packet discussed earlier
in this section.
In D-DQW, the temporal disorder is homogeneous in

space. So if we start with a state at the origin, x = 0,
D-DQW will spread the wave-packet as much to the left
as to the right of x = 0. Hence although there are ex-
citations present in the system the wave packet remains
stationary (see figure 1). This can be easily seen by not-
ing that the group velocity of the wave packet in D-DQW
will have time dependent coin parameter i.e,

vgd(θt, k0) =
a

τ

cos θt sin
k0a
~

√

1−
(

cos θt cos
k0a
~

)2
, (8)

where, θt is a random function of
⌊

t
τ

⌋

, k0 is the central

momentum and if T be the total time for the complete
random coin evolution, we will have, average group ve-
locity

〈

vgd(t)
〉

T
= 0. For simplicity, from hereafter we

will choose a = τ = 1.
Note vg in Eq. (6) is a linear function of cos θ. So,

FIG. 2: Schematic representation of the configuration of the
evolution operation with fixed coin operations at marked po-
sitions to produce pawl like effect in DQW.

if θ varies over it’s complete period [0, 2π), randomly or
following some uniform distributed function, then aver-
aging over the whole period, the group velocity will come
out to be zero. For any general initial state we can show
that the expectation value of position over the period is
always zero as distribution is always symmetric around
the initial position. This shows there is no transport of
the wave-packet in D-DQW.

III. QUANTUM RATCHET IN D-DQW

To get a directed transport in DQW we need to have
some directionality in the initial state of particle or asym-
metry in the coin operation [23]. However, these biasing
will not lead anywhere towards giving a directionality for
D-DQW. A ratchet in DQW should be the one which will
give directionality to both, DQW and D-DQW. A ratchet
like transport can arises from locally broken symmetries.
Therefore, in this work we present a method to break the
spatial symmetry of the walk operator locally which will
result in introducing directionality to both DQW and D-
DQW. Spatial symmetry is broken by introducing a pawl
like effect in the form of fixed coin operations at marked
position.
In figure 2 we show the schematic of one possible config-

uration of introducing pawl like effect on the spatial posi-
tion. The coin parameter, θ at x = −1 and x = 0 are cho-
sen to be equal to π

2
and 0, respectively and at all other

positions, some constant value, θ = θt is fixed. If the
initial position of the particle is at x = 0, after first step
the state | ↑〉⊗|x = 0〉 → | ↑〉⊗|x = −1〉 and after second
step | ↑〉 ⊗ |x = −1〉 → | ↓〉 ⊗ |x = 0〉. Similarly, if the
initial state of the particle is at the position x = −2 the
state | ↓〉⊗|x = −2〉 → | ↓〉⊗|x = −1〉 → | ↑〉⊗|x = −2〉.
Therefore, locally (at position −1), the spatial symmetry
is broken.
This configuration will introduce a pawl like effect to

the DQW system. Pawl like effect at marked position
x = 0 results in the a transport of wavepacket in in-
creasing direction of x for both standard, and disordered
DQW. In figure 3 we show the directed propagation of
wavepacket for smaller values of θ and localized compo-
nent around the origin for larger value of θ when the
Pawl effect is introduced. The coin operation, at x = −1
effectively blocks the spread of the wavepacket in the neg-
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FIG. 3: Probability distribution of standard DQW with θ
after 100 steps of evolution. The initial state chosen for both
the evolution, |Ψ(0)〉 = 1√

2

(

|↑〉 + |↓〉
)

⊗ |x = 0〉. Because of

the pawl like effect the wavepacket is directed towards the
positive x direction for smaller value of θ and locked around
the initial position for larger value of θ.
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FIG. 4: Probability distribution of D-DQW with pawl like
effect after different number of steps. In the insets (i) and (ii)
we show the standard deviation and 〈x〉 as function of steps
for D-DQW without pawl like effect in (a) and and with pawl
like effect in (b). We can see the increase in 〈x〉 with pawl
like effect along with a smaller standard deviation.

ative x direction. Also, choosing θ = 0 at x = 0 enhances
the possibility of the rightward propagation. This can be
seen from the fact that the group velocity of a wavepacket
given in Eq. (6) is maximum for θ = 0 and hence for any
smaller value of θ we get a delocalized wave packet in
positive direction of x. We should note that the proba-
bility of the wavepacket at positions far from origin get
significantly small with the increase in θ resulting in the
wide spread of small non-zero probability at all position
in the rightward direction. We will later see that this
apparent disadvantage in wavepacket transport can be
removed by introducing disorder in the system.

It is known that, random excitation or random coin
operation (which does not prefer any particular direc-
tion) in D-DQW, is not able to give us directed trans-
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FIG. 5: Probability distribution after 100 steps of DQW
with pawl effect using different order of W1 and W2. For
(a) W1 with θ = π/30 and W2 are randomly picked with
1/2 probability for each step. For (b) W1 with θ = π/6
and W2 are randomly picked with 1/2 probability for each
step. For (c) W1 with θ = π/30 and W2 are applied in or-
der (W2)

25(W1)
25(W2)

25(W1)
25. In inset, SD and < x >

shows that the ordered combination of operations gives a bet-
ter transport.

port in a preferred direction [11]. But this random coin
operation, helps us to localize the wavepacket, that is to
say, standard deviation from the center of wavepacket,√
< x2 > − < x >2 becomes less and the mean displace-

ment will be zero. Our scheme of introducing pawl effect
gives directionality for a localized wavepacket. In figure 4
we show the probability distribution for D-DQW after
different number of steps with pawl like effect. With in-
crease in number of steps we can note a small shift of
the probability distribution to the right. To quantify the
wavepacket spreading and the shift in the mean position
as function of steps, we shown the standard deviation and
< x > in inset (i) and (ii) of figure 4 for D-DQW with
(continuous line) and without pawl (dashed line) like ef-
fect. We can note that the mean value which is zero for
D-DQW without pawl like effect and is shown to grow
up to 10 with pawl like effect after 200 steps. The pawl
like effect also contributes to the narrowed probability
distribution (smaller standard deviation).
From the above observation we can summarize that

for standard DQW with pawl like effect, any value of
θ ∈ [0, π

2
) gives us directional transport. Small values of

θ implies higher group velocity in Eq. (6) and we get a
localized peak with a higher < x > value. As θ increases
the peak lowers down while creating non-zero probability
of occurrence at every position, which means decrease in
< x >. For a D-DQW with pawl like effect we will have
a directed transport with a small increase in < x >.
Using different combination of disordered and stan-

dard DQW evolition for different interval of time we can
demonstrate the comtrol over the ratchet effect. Mathe-
matically this means that we choose two types of walk op-
erator, namely W1 and W2, and use them judiciously in a
certain pattern to get a directed transport of wavepacket
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with significantly higher < x > value. The two walk op- erators we choose are W1 = SC1 and W2 = SC2 where,

C1 = B
(π

2

)

⊗ |−1〉 〈−1|+B(0)⊗ |0〉 〈0|+
∑

x 6=−1,0

B(θ) ⊗ |x〉 〈x| (9)

C2 = B
(π

2

)

⊗ |−1〉 〈−1|+B(0)⊗ |0〉 〈0|+
∑

x 6=−1,0

B
(

θt
)

⊗ |x〉 〈x| . (10)

In C1, θ once fixed is retained for all W1 operations
whereas, in C2, θt is chosen randomly for different time-
step (different for each W2). By choosing different order
of applying operators W1 and W2 we can show that the
control in the transport of the wavepacket can be opti-
mized. For example, in figure 5 we show the probability
distribution, standard deviation and < x > for an 100
step walk with pawl like effect using different order of
W1 and W2 operation. By inspection we can note that
the use of W1 has resulted in the increase of < x > (10
after 100 steps) when compared to the evolution using
only W2 (6 after 100 step) as shown in figure 4. There-
fore, a well order combination of W1 and W2 can result
in low standard deviation and high < x >. In figure 6 we
show the well confined probability distribution with small
standard deviation and large < x >∝ t (< x >= t/2).
From this analysis we can conclude that by first choosing
W1 (with θ = π/30) for fixed number of steps of the walk
we can ensure that the wavepacket is transported at the
rate proportional to number of steps. The transported
wavepacket is confined around the position by applying
W2 for a finite number of steps. Note that introducing
randomness in walk operator localizes the already spread
out wavepacket around its mean position. This can be
seen from the inset (i) where the standard deviation is
slightly larger for the wavepacket with less number of
W2 operation((c) in the probability distribution). From
inset (ii) we can note that the < x > continues to in-
crease with the operation W1 and starts localizing when
the operation W2 starts acting on the system. There-
fore, a good combination of W1 and W2 can result in
an efficient transport without spreading widely over the
position space.
For a the evolution with combinaiton of operators W1

followed by W2, the state of the system after time T =
T2 + T1 is given by,

|Ψ(T2 + T1)〉 = WT2

2 WT1

1 |Ψ(0)〉 (11)

and this results in < x >∝ cos(θ)T1 where θ is fixed coin
operation in W1.

IV. ENTANGLEMENT ENTORY IN RATCHET

In our model of ratchet we have not used any effect
of noise that could take the pure state to the mixed
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FIG. 6: Probability distribution after 100 and 200 steps of
DQW operation with pawl effect. For (a) [W2]

50[W1]
50 (b)

[W2]
100[W1]

100 and (c) [W2]
50[W1]

160 where θ = π/30 for W1.
We can see an well confined transport ∝ t/2.

state and decohere the system. Therefore, quantum in-
terference which plays an important role in dynamics of
DQW continues to play an equally important role during
ratchet effect in DQW. Instantaneous density matrix of
the system is described by,

ρ(t) = |Ψ(t)〉 〈Ψ(t)| (12)

During DQW, the evolution of particle in superpo-
sition of position space creates entanglement between
them. As we started with a pure initial state and whole
walk operation is unitary, the system state always remain
pure. Thus, entanglement entropy is enough to give the
accurate measure of entanglement.
Partially tracing out with respect to space degrees, we

have the reduced density matrix,

Trx
[

ρ(t)
]

= ρc(t).

Entanglement entropy is given by the formula,

Se(t) = −Trc
[

ρc(t) log ρc(t)
]

In Figure 7 we show the entanglement entropy as a func-
tion of number of steps for different configuration of the
DQW evolution with and without pawl effect. For all
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FIG. 7: Entanglement with increase in number of steps for
different combination of DQW with and without pawl effect.
(a) and (b) are for standard standard DQW and D-DQW
without pawl effect. (c) D-DQW with like pawl effect (d)
DQW with operations W 50

2 W 50

1 where θ for W1 is π/30. (e)
DQW with operations W 25

2 W 25

1 W 25

2 W 25

1 . For all the configu-
ration we can note that the entanglement entropy after some
time reaches a values closer to 1.

the evolution with pawl effect we see that the entangle-
ment entropy takes more time to get close to the max-
imum value when compared to the standard DQW and
D-DQW without pawl. Therefore, after large time, the
transported wavepacket will exist in a saturated entan-

gled state with the position space.

V. CONCLUSION

In this paper we have proposed a quantum ratchet
model using DQW. Our configuration of fixed unitary
coin operation at marked positions presents the effect
of pawl. The probability distribution of the DQW, and
D-DQW which spread symmetrically in position space
takes a directed path when the pawl effect in the position
space is introduced. We presented various configurations
of the evolution operation which can be effectively used
to optimize the combination of operations for maximum
< x >∝ t. We have found that the combination of evolu-
tion with sequence of fixed θ operations followed by the
evolution operator with random θ can be optimized to
maximize the < x > with s small standard deviation of
the distribution. As the walk evolution with and with-
out disorder, and pawl effect is completely defined using
a unitary operations our transported wavepacket remain
coherent during the transport and we have shown this by
calculating the entanglement entropy. It would be inter-
esting the look into the effect of decohering noise on mean
displacement due to pawl effect and explore the poten-
tial application of the scheme beyond coherent quantum
transport.
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