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Abstract
Quantum effects such as the environment assisted quantum transport (ENAQT) displayed in
photosynthetic Fenna–Mathews–Olson (FMO) complex has been simulated on analog quantum
simulators. Digital quantum simulations offer greater universality and flexibility over analog
simulations. However, digital quantum simulations of open quantum systems face a theoretical
challenge; one does not know the solutions of the continuous time master equation for developing
quantum gate operators. We give a theoretical framework for digital quantum simulation of
ENAQT by introducing new quantum evolution operators. We develop the dynamical equation for
the operators and prove that it is an analytical solution of the master equation. As an example,
using the dynamical equations, we simulate the FMO complex in the digital setting, reproducing
theoretical and experimental evidence of the dynamics. The framework gives an optimal method
for quantum circuit implementation, giving a log reduction in complexity over known methods.
The generic framework can be extrapolated to study other open quantum systems.

1. Introduction

Quantum simulators are devices that can turn the exponential scaling of resources needed to simulate and
understand properties of complex quantum systems on classical computers into a favourable polynomial
overhead. Original proposal for quantum computers by Feynman [1] was to simulate complex quantum
systems such as many body quantum systems in low temperature physics and lattice gauge theories. An
algorithm by Shor to solve the discrete logarithm problem on a quantum computer [2] highlighted the
broader application of quantum computers. However, a full scale quantum computer with millions of
qubits is far from being realised [3]. Ongoing experimental research is geared towards making quantum
simulators with small number of qubits [4] as first practical applications of a quantum computer. Quantum
simulators can be analog or digital. Analog simulations use continuous time evolution models such as the
Lindblad master equation [5]. Digital simulations are done using quantum gates for simulating discrete
time evolution operators. Compared to analog quantum simulators, digital quantum simulations offer
universality and flexibility [5]. One of the major challenges in building a quantum simulator has been the
presence of noise due to environment. However, recently a number of studies have remarkably shown that
noise can facilitate transmission of energy in quantum simulators through a process called environment
assisted quantum transport (ENAQT) [6]. Environment engineering in quantum networks for enhanced
energy transport has been studied to understand the role of noise in ENAQT [7] and for building quantum
simulators [8].

One of the important application of quantum simulators in near-term is to understand the dynamics in
chemical systems. Chemical complexes have been found to show a variety of quantum effects [9] such as
ENAQT. The Fenna–Mathews–Olson (FMO) protein complex is one of the most widely studied
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photosynthetic systems. It transfers the excitation energy from light harvesting antenna to the reaction
centre in the photosynthetic complex of certain bacteria [10]. FMO complex has been studied for decades
to understand the underlying mechanism of high efficiency excitation energy transfer (EET) [11] in
photosynthetic complexes [12–20]. The phenomenon of delocalized exciton states has been observed via
electronic spectroscopy in light-harvesting complexes [15] and the FMO protein complex [21].
A combination of quantum and dissipative effects have been observed to felicitate the transfer of excitation
energy through the complex [21]. Engel et al [16] found direct evidence for quantum coherence in the
FMO complex, Mohseni et al [22] gave a continuous-time quantum walk model with environment assisted
transport (ENAQT) and Plenio and Huelga [23] presented a dephasing-assisted transport model to
successfully explain the high efficiency. While quantum walks provide models for quantum simulation [24],
continuous-time quantum walk over noisy lattices has been studied for understanding spatially correlated
noise [25]. Quantum simulations of FMO complex have been done to understand simulations of open
quantum systems [26] and other systems in quantum chemistry [27]. It is also being studied to develop
efficient artificial light-harvesting systems [28]. Analog quantum simulations of FMO complex have been
done on NMR quantum computer [29], superconducting qubits [30], superconducting circuits [29, 31] and
ultracold atoms [32]. In [33, 34], Mahdian et al described a setup for digitally simulating the FMO complex.
But their study does not include quantum jumps and the interplay of quantum and dissipative effects which
are the salient features of the environment assisted quantum walk. These previous studies led us to explore
and characterize the theoretical model with a general framework for digital quantum simulation of the
dynamics in chemical complexes along with FMO complex as a specific example.

Open quantum systems [35] are often described using a reduced density matrix which is obtained by
tracing out the environment from density matrix of the whole system in a closed form (system +

environment). The master equation is used to describe the evolution of the reduced density matrix. Analog
simulations of open quantum systems directly mimic the continuous-time evolution of the quantum system
of interest on the simulator [30]. Master equations are commonly used models for analog simulations.
Other approaches like the quantum Langevin equations [36, 37] based on the Heisenberg approach give
operator equations for describing open quantum systems. Since simulations depend on evolving the
simulator to mimic the system of interest, Langevin equations need to be remodelled to equivalent master
equation for quantum simulation. Thus, master equations serve as a more suitable model for quantum
simulation of open quantum systems. This approach is more suitable for modelling quadratic Hamiltonians
over modelling of non-quadratic interacting Hamiltonians for which further probe is needed. Here, we will
focus on quadratic Hamiltonians. Numerical simulation of open quantum systems can be done using the
QuTIP [38] package for python, which uses master equation or other continuous-time models. Digital
quantum simulation of open quantum system can be achieved by using an operator sum representation of
the dynamics [39]. The operator sum representation is much more general than master equations or other
models. For example, non trace preserving processes can be simulated by adding an extra dummy operator
to complete the trace. Such techniques are not possible for master equations. The operator sum
representation can also simulate non Markovian dynamics, unlike Lindblad master equation. Thus, apart
from being suitable for digital quantum simulation, the operator sum representation offers several
advantages for numerical simulation as they can capture a wider range of phenomena.

In this work, we develop a theoretical framework for digital simulation of environment assisted energy
transfer in open quantum systems. The main challenge in developing discrete time evolution operators for
digital quantum simulation is that one needs to solve the master equation for which solutions are otherwise
not known. We give a methodology to develop evolution operators and dynamical equation in the operator
sum representation which capture the interplay of unitary quantum evolution and noise in open quantum
systems. We derive the discrete-time evolution operators and dynamical equation for the process of ENAQT
using this methodology and give a mathematical proof that the derived dynamical equation is the analytical
solution of the Lindblad master equation. The evolution equation is generalised to incorporate variable
strength of system–bath interaction which helps in controlling the dynamics by tuning the level of noise.
This gives a theoretical model for the digital quantum simulation of ENAQT with tunable bath coupling. As
an application of this framework we give a discrete-time dynamical model for the FMO complex. Energy
transfer in the FMO complex happens through ENAQT of delocalized excitons over a network of strongly
coupled sites and is dependent on the temperature of environment. We give the dynamical equation to
capture the energy transfer and demonstrate its high efficiency through numerical simulations. We use the
tunable bath-coupling model to simulate temperature dependence of the dynamics and show that the
results are consistent with existing theoretical and experimental evidence. Finally, we give the quantum
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circuit for the implementation of the dynamical equation and discuss it is space and time complexity. We
show that our framework gives a log-space reduction in complexity over existing techniques.

This article is organised as follows. The basic description of ENAQT is given in section 2. In section 3
theoretical framework for digital quantum simulation of ENAQT is developed. In section 4, the framework
is applied to model ENAQT in the FMO complex and simulations of this model are presented. Some
concluding remarks are given in section 5.

2. Environment assisted quantum transport

Hamiltonians describing the dynamics of the quantum systems typically possess energy mismatches, that
can hinder transmission of excitation due to Anderson localization [40]. However, quantum systems are
also generally subjected to relatively high levels of environment-induced noise and decoherence. A certain
degree of noise can cause transfer of excitation through dissipative processes, which can overcome
localization. The interplay between the coherent dynamics of the system and the incoherent action of the
environment can result in greater transport efficiency than coherent dynamics on its own [41]. The noise is
in the form of relaxation and dephasing, combined with coherent dynamics leads to the phenomenon of
ENAQT. The Hamiltonian of the system due to pure quantum interactions is given by,

H =
∑

m

εm|m〉〈m|+
∑
n<m

Vmn

(
|m〉〈n|+ |n〉〈m|

)
, (1)

where εm are the energies of the states and Vmn denotes the coupling leading to coherence between different
states. The main effects of the environment, dephasing and relaxation together lead to quantum jumps
between states. Quantum jumps are represented by the following phonon bath Hamiltonian,

Hp =
∑
m,n

qmn|m〉〈n|, (2)

where qmn are the couplings due to the phonon bath. The mathematical form of both, Vmn and qp
mn are

same, however Vmn gives the coherent couplings between the sites, while qp
mn gives the rate of quantum

jumps between sites due to the environment interaction. Vmn only depends on the system of chromophores
and leads to coherent evolution of the system between different sites. The qp

mn depends on couplings of the
system to the environment and is used to obtain probabilities of quantum jumps. This leads to the Lindblad
master equation,

dρ

dt
= L(ρ) = −i[H, ρ] + L(ρ),

L(ρ) =
∑
m,n

γmn

(
LmnρL†

mn −
1

2
LmnL†

mnρ−
1

2
ρLmnL†

mn

)
,

(3)

where Lmn = |m〉〈n| and γmn is obtained from qmn.
The dynamics of ENAQT depend on quantum coherence, described by the system Hamiltonian and on

the environment induced quantum jumps between different states. The environment causes decoherence of
the states. These effects together cause a transfer of excitation energy in ENAQT. The overall dynamics due
to environment are non unitary and trace preserving.

3. Framework for ENAQT

3.1. Open quantum systems
We can represent a system in interaction with the environment as an open quantum system, where the
environment is modelled by a phonon bath. An open quantum system is a part of a larger closed system in
Hilbert space H = HS ⊗HB, where HB is the phonon bath Hilbert space [42]. Assuming the initial state is
represented by the separable density matrix ρ = ρS ⊗ |0〉〈0|B, the evolution of the total system is,

ρ(t) = USB(ρS ⊗ |0〉〈0|B)U†
SB.

A partial trace over B gives the evolution of the open quantum system S,
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ρS(t) = TrB(ρ(t)) =
∑

k

〈k|USB(ρS ⊗ |0〉〈0|B)U†
SB|k〉

=
∑

k

〈k|USB|0〉ρS(0)〈0|U†
SB|k〉

which in the form of Kraus operators Mk will be,

ρS(t) = M(ρS(0)) =
∑

k

MkρS(0)M†
k (4)

where
Mk = 〈k|USB|0〉 = TrB(|0〉〈k|USB). (5)

Here |k〉 is an orthonormal basis for HB and
∑

k M†
kMk = 𝟙. This can be used to obtain operators for effects

of environment on the system by introducing a bath to describe the dynamics and then tracing it out.
However, ENAQT is a combination of quantum and dissipative effects, described by the Lindblad master
equation, equation (3). We need to solve the master equation to obtain operators for the combined
dynamics.

3.2. Analytical solution
To solve master equation, one needs to obtain operators which capture the combined effect of quantum and
dissipative processes. This can be obtained by combining the operators for different processes of ENAQT.
We develop the following methodology to systematically derive the operators and the dynamical equation
for ENAQT.

Methodology: To model both quantum and dissipative effects we introduce evolution operators which
are a combination of Kraus operators and unitary quantum evolution. Using these operators, we derive the
evolution equation for density matrix. We develop the general model by first taking a toy system and step by
step adding different processes to it, to arrive at the final picture. We consider a system with one quantum
jump and find a model for this toy system using the following procedure: we write an evolution for system
+ bath which appropriately captures the quantum jump. We trace out the bath from the evolution and find
the Kraus operators for quantum jump in the system. Then, we introduce unitary quantum evolution to
this system in addition to the quantum jump. Thus, the new evolution operators are obtained by
appropriately combining Kraus operators and unitary quantum evolution operator. We use these operators
to write the discrete time evolution equation for this setup, which appropriately captures the interplay of
quantum and dissipative effects.

Next, we add another quantum jump to the system to generalise the toy model to simulate multiple
quantum jumps. Again, we draw a parallel from the first case and follow the above procedure to develop a
model for this setup. We write the evolution operators and arrive at the dynamical equation for this setup.
This gives a general model for simulating ENAQT in open quantum systems with unitary quantum
evolution and multiple environment induced quantum jumps.

3.2.1. Toy model: single quantum jump
Consider a two level system with states given by |0〉S and |1〉S. Say the bath B induces a quantum jump from
|0〉S to |1〉S with probability p0→1. The system + bath evolution can be formalised as follows,

|0〉S|0〉B →
√

1 − p0→1|0〉S|0〉B +
√

p0→1|1〉S|1〉B.

|1〉S|0〉B → |1〉S|0〉B.

The Kraus operators for quantum jumps on the system, obtained from tracing out the bath are,

M0 =

(√
1 − p0→1 0

0 1

)
and M1 =

(
0 0√
p0→1 0

)
.

The operators can also be written as,

M0 =
√

1 − p0→1|0〉〈0|+ |1〉〈1| and M1 =
√

p0→1|1〉〈0|. (6)

Now, introduce quantum evolution to the system. The Lindblad equation, with the system being subject to
free Hamiltonian HS is,

∂ρ(t)

∂t
= − i

�
[HS, ρ(t)] + L(ρ(t)), (7)

L(ρ(t)) is due to the effect of quantum jumps, where

L(ρ(t)) =
∑

k

[LkρLk† − 1

2
LkLk†ρ− 1

2
ρLkLk†]. (8)
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Here Lk are quantum jump operators. The terms carry their usual meaning, first term represents the
quantum jumps and the other two terms are normalisation terms for the case when the jump does not
happen. The Kraus operators can be combined with unitary quantum evolution as follows to solve this
master equation,

M′
0 = M0U M′

1 = M1, (9)

where U = e−
iHSΔt

� . It can be verified that M′†
0 M′

0 + M′†
1 M′

1 = 𝟙. These evolution operators, equation (9),
where M′

0 has unitary quantum evolution and M′
1 does not, will be useful to capture the appropriate

dynamics, as will be proved in the following section. The operators can be interpreted as follows. Two
processes are happening in the system at any time t: coherent evolution and quantum jumps. From a state,
the population density can move out of the state via these two processes. From the total population, some
goes out via quantum jumps. And from the population remaining after the quantum jumps, some goes out
via quantum coherence. The second operator M′

1 depicts the moving out through quantum jumps. M0 in
the first operator capture’s the population that remains after the quantum jump. From this remaining
population, some moves out via quantum coherence as captured by U in M′

0 = M0U.
Thus, the discrete time density matrix evolution equation obtained from these operators is given by,

ρ(t +Δt) = M′
0(
√
Δt)ρ(t)M′†

0 (
√
Δt) + M′

1(
√
Δt)ρ(t)M′†

1 (
√
Δt). (10)

Here
√
Δt is taken, so that considering contributions from M′

0 and M′†
0 and assuming linear dependence on

time, the net change is of the first order in Δt.
Substituting equation (6) in equation (10),

ρ(t +Δt) = (1 − p0→1)|0〉〈0|Uρ(t)U†|0〉〈0|+
√

1 − p0→1|0〉〈0|Uρ(t)U†|1〉〈1|

+
√

1 − p0→1|1〉〈1|Uρ(t)U†|0〉〈0|+ |1〉〈1|Uρ(t)U†|1〉〈1|+ (p0→1)|1〉〈0|ρ(t)|0〉〈1|. (11)

The second and the third terms of the preceding equation capture the decoherence due to the bath and
contribute to the normalisation terms. The first term and the last term are due to the quantum jump.
Correspondence of the different terms to the Lindblad equation given above can be seen here. U and U †

capture the quantum coherence.

3.2.2. General model: multiple quantum jumps
We can generalise the previous setup by including a quantum jump in the other direction, from |1〉S to |0〉S

with probability p1→0. This can be represented using a two qubit bath, where the first qubit (B1) captures
the first quantum jump and qubit, B2 captures the second quantum jump. Then the system + bath
evolution is given by,

|0〉S|0〉B1 |0〉B2 →
√

1 − p0→1|0〉S|0〉B1 |0〉B2 +
√

p0→1|1〉S|1〉B1 |0〉B2

|1〉S|0〉B1 |0〉B2 →
√

1 − p1→0|1〉S|0〉B1 |0〉B2 +
√

p1→0|0〉S|0〉B1 |1〉B2

; (12)

and the corresponding Kraus operators for the system, after tracing out the bath are,

M00 =
√

1 − p0→1|0〉〈0| M01 =
√

p0→1|1〉〈0|

M11 =
√

1 − p1→0|1〉〈1| M10 =
√

p1→0|0〉〈1|.
(13)

Adding quantum evolution to Kraus operators when the system is also subject to free Hamiltonian HS,
similar to the previous case leads to the following evolution operators,

M′
00 = M00U M′

01 = M01

M′
11 = M11U M′

10 = M10.
(14)

Drawing parallel from equation (11), the discrete time dynamical equation is given by,

ρ(t +Δt) = (1 − p0→1)|0〉〈0|Uρ(t)U†|0〉〈0|+
√

1 − p0→1

√
1 − p1→0|0〉〈0|Uρ(t)U†|1〉〈1|

+
√

1 − p0→1

√
1 − p1→0|1〉〈1|Uρ(t)U†|0〉〈0|+ (1 − p1→0)|1〉〈1|Uρ(t)U†|1〉〈1|

+ (p0→1)|1〉〈0|ρ(t)|0〉〈1|+ (p1→0)|0〉〈1|ρ(t)|1〉〈0|. (15)

The last two terms, and the first and the fourth terms above represent the quantum jumps. The second and
third terms capture the decoherence and contribute to the normalisation terms. U and U† capture the
unitary quantum evolution.
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Substituting equation (14) in equation (15), we arrive at the general model for simulating quantum jumps
and unitary quantum evolution,

ρ(t +Δt) = M′
00(

√
Δt)ρ(t)M′†

00(
√
Δt) + M′

00(
√
Δt)ρ(t)M′†

11(
√
Δt) + M′

11(
√
Δt)ρ(t)M′†

00(
√
Δt)

+ M′
11(

√
Δt)ρ(t)M′†

11(
√
Δt) + M′

01(
√
Δt)ρ(t)M′†

01(
√
Δt) + M′

10(
√
Δt)ρ(t)M′†

10(
√
Δt). (16)

The second and third terms above are the crucial features of this dynamical equation. These asymmetric
terms with M′

00 and M′
11 representing decoherence make this equation conceptually different from the

evolution equation obtained from Kraus operators,

ρS(t) =
∑

k

MkρS(0)M†
k.

This evolution equation does not have asymmetric terms of the form MiρS(0)M†
j , which are present in the

equation we have arrived at, equation (16) by drawing a parallel, equation (15) from the case with single
quantum jumps, equation (11). Now we can see that this parallelism gave us insight to add these
asymmetric terms to equation (14), which would have been hard to see directly from the evolution equation
for Kraus operators, equation (4). This shows that the methodology used in developing the model is
effective to flesh out the finer details of the theoretical framework. Equation (14) can be applied to digitally
simulate any open quantum system with environment assisted evolution. It is the discrete time solution of
the Lindblad master equation.

3.3. Proof of correctness
The equivalence of the dynamical equations, equations (10) and (14) to the Lindblad formalism,
equation (7) is proven in this section. Considering the case with single quantum jump, the following
derivation shows that equation (10) is the discrete time solution to Lindblad master equation governing the
system.

The master equation is in continuous time formalism. For continuous time limit of the discrete
dynamics substituting Δt → ∂t in equation (10),

ρ(t + ∂t) = M′
0(
√
∂t)ρ(t)M′†

0 (
√
∂t) + M′

1(
√
∂t)ρ(t)M′†

1 (
√
∂t). (17)

Using equation (9),

M′
0(
√
∂t) = M0U = M0(

√
∂t)e−

iH∂t
�

≈ M0(
√
∂t)

[
𝟙− iH∂t

�

]
. (18)

Now, M0M†
0 + M1M†

1 = 𝟙 and M0 = M†
0, so M0(

√
∂t) can be written as,

M0(
√
∂t) ≈

√
𝟙− M1(

√
∂t)M†

1(
√
∂t)

≈ 𝟙− 1

2
M1(

√
∂t)M†

1(
√
∂t). (19)

Substituting equation (19) in equation (18),

M′
0(
√
∂t) ≈ M0(

√
∂t)

[
𝟙− iH∂t

�

]

≈
[
𝟙− 1

2
M1(

√
∂t)M†

1(
√
∂t)

] [
𝟙− iH∂t

�

]
. (20)

Considering terms only up to first order in ∂t, we get,

M′
0(
√
∂t) ≈

[
𝟙− iH∂t

�
− 1

2
M1(

√
∂t)M†

1(
√
∂t)

]

M′†
0 (
√
∂t) ≈

[
𝟙+

iH∂t

�
− 1

2
M1(

√
∂t)M†

1(
√
∂t)

]
.

(21)

Substituting M′
0, equation (21) and M′

1, equation (9) in equation (17),

6
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ρ(t + ∂t) ≈
[(

𝟙− iH∂t

�
− 1

2
M1(

√
∂t)M†

1(
√
∂t)

)
∗ρ(t)

(
𝟙+

iH∂t

�
− 1

2
M1(

√
∂t)M†

1(
√
∂t)

)]

+ M1(
√
∂t)ρ(t)M†

1(
√
∂t). (22)

Considering terms only up to first order in ∂t and rearranging the terms,

ρ(t + ∂t) = ρ(t) − i

�
∂t[H, ρ(t)] + M1(

√
∂t)ρ(t)M†

1(
√
∂t) − 1

2
M1(

√
∂t)M†

1(
√
∂t)ρ(t)

− 1

2
ρ(t)M1(

√
∂t)M†

1(
√
∂t). (23)

We can see that the evolution operators, equation (9) helped us get the quantum jump and the
normalisation terms correctly. Padding M′

1 as well with unitary quantum evolution (U) would lead to extra
unwanted terms.
Set M1(

√
∂t) = L1

√
∂t,

ρ(t + ∂t) = ρ(t) + ∂t

[
− i

�
[H, ρ(t)] + L1ρ(t)L†

1 −
1

2
L1L†

1ρ(t) − 1

2
ρ(t)L1L†

1

]
. (24)

We obtain the Lindblad equation,

∂ρ(t)

∂t
= − i

�
[HS, ρ(t)] + L(ρ(t))

(
L(ρ(t)) = L1ρ(t)L†

1 −
1

2
L1L†

1ρ(t) − 1

2
ρ(t)L1L†

1

)
.

We started from the dynamical equation, equation (10) and arrived at the Lindblad master equation,
equation (7). Thus, for the case with single quantum jump, we showed that the dynamical model is the
solution for its Lindblad equation in the Markov approximation. A similar proof for the more general case
with multiple quantum jumps, equation (16) can be worked out.

Thus, equations (14) and (16) can be used to describe the complete dynamics of environment assisted
quantum walk in general open quantum systems.

3.4. Model for tunable bath coupling
The dynamics of ENAQT depend on the level of noise the system is subject to. Noise depends on the
strength with which the system couples to the bath. At lower level of coupling, the strength is a fraction of
the full coupling mode. We can denote this fraction as χ ∈ [0, 1]. The coupling strength dependent master
equation can be written as,

∂ρ(t)

∂t
= − i

�
[Hc, ρ(t)] + χLp(ρ(t)). (25)

This can be modified to be written as,

= −(1 − χ)
i

�
[Hc, ρ(t)] + χ

[
− i

�
[Hc, ρ(t)] + Lp (ρ(t)

]
. (26)

For χ = 1 this reduces to the normal master equation. For other values of χ, it captures the dynamics at
different strengths of system–bath coupling. This can be digitally simulated by the following dynamical
equation,

ρχ(t +Δt) = (1 − χ)Uρ(t)U† + χρ(t +Δt), (27)

where ρ(t +Δt) is given by equation (16). χ can be used to study variation of the dynamics with respect to
changes in the system–bath interaction. Thus we obtain the discrete time dynamical equation for digital
quantum simulation of environment assisted quantum walk with variable bath coupling. In the next
section, we apply this model to simulate the FMO complex.

4. Simulating the FMO complex

4.1. Energy transfer in FMO complex
FMO complex is the quantum transport channel for EET in green sulphur bacteria. The complex contains
chromophores, which act as sites for excitons and are held by a protein scaffold at the right distances and
orientations for efficient energy transfer. The sites show quantum coherence. The Hamiltonian [22] for the
multi chromophoric system is given by,

Hc =

Nc∑
m=1

εma†mam +

Nc∑
n<m

Vmn(a†man + a†nam). (28)

7



New J. Phys. 22 (2020) 123027 P Gupta and C M Chandrashekar

Nc = 7 is the number of chromophores in FMO complex. The a†m and am are the creation and annihilation
operators for an electron–hole pair (exciton) at chromophore m and εm are the site energies. Vmn are
Coulomb couplings of the transition densities of the chromophores. At any time there is one exciton in the
complex. Initial excitation occurs at site 1 or 6 and is transported to the sink at sites 3 and 4. The structure
of the FMO complex [43] is shown in figure 1. Dominant couplings are represented by edges in figure 1 for
which Vmn is large. The channel is subjected to noise by the environment. The phonon bath (protein
scaffold) induces quantum jumps, decoherence and dephasing of excitons without changing the number of
excitations. The phonon coupling Hamiltonian is,

Hp =

Nc∑
m,n

qp
mna†man.

Damping of the excitation due to the radiation field is given by the Hamiltonian,

Hr =

Nc∑
m

qr
m(a†m + am).

Lamb shifts due to phonon and photon bath coupling contribute negligibly to the dynamics [44], so are
excluded from the equations. The Lindblad master equation in the Born-Markov and secular
approximations is given by,

∂ρ(t)

∂t
= − i

�
[Hc, ρ(t)] + Lp(ρ(t)) + Lr(ρ(t)). (29)

The respective Lindblad superoperators Lp and Lr are given by,

Lk(ρ(t)) =
∑
ω

Γk(ω)
∑
m,n

[
Ak

m(ω)ρAk†
n (ω) − 1

2
Ak

m(ω)Ak†
n (ω)ρ− 1

2
ρAk

m(ω)Ak†
n (ω)

]
. (30)

Here (k = p, r), Ap
m(ω) =

∑
Ω−Ω′=ωc∗m(MΩ)∗cm(MΩ′)|MΩ〉〈MΩ′ |, where |MΩ〉 is the exciton with frequency

Ω and |MΩ〉 =
∑

m cm(MΩ)|m〉. The exciton states and their energies are the eigenvectors and eigenvalues,
obtained by diagonalizing Hamiltonian Hc [given in equation (28)]. Excitons are delocalised over sites and
the Ap

m(ω) represent delocalised exciton transport. The system Hamiltonian delocalises the excitons over
sites due to coherence and phonon bath induces relaxation of these delocalised excitons. The jump
operators constructed from exciton states capture the effect of coherence on dissipative transport. Quantum
coherence causes excitons to delocalise over different sites and the quantum jumps act between these
delocalised exciton states rather than between different sites. The equation has both quantum and
dissipative effects and captures their interplay which leads to greater transport efficiency. Γp(ω) are the rates
for quantum jumps [21]given by,

Γp(ω) = 2πJ(ω)(1 + n(ω)), (31)

where J(ω) is Ohmic spectral density and n(ω) = 1/[exp(�ω/kT) − 1]. The rate of quantum jumps
increases with temperature. This can be understood in terms of spontaneous and induced relaxations
caused by the environment. As the temperature increases, the probability of induced relaxation increases,
which cause more quantum jumps and thus the phonon coupling is higher.Damping is of the order of
1 ns−1 [48] and the transfer time for excitation across the complex is ∼4 ps [44]. Since the damping
contribution is negligible for the duration of the quantum walk, it is neglected in the analysis. Overall, the
dynamics are given by,

∂ρ(t)

∂t
≈ − i

�
[Hc, ρ(t)] + Lp(ρ(t)). (32)

The above is similar to the ENAQT quantum walk described in equation (3). Thus, the dynamics in the
FMO complex are described by the master equation for ENAQT. We can treat the multichromophoric
system in the FMO complex as an open quantum system. The fluctuations of correlated protein
environment form a quantum bath which enhances the energy transport in the FMO complex [45, 46]. Due
to coherence, excitons delocalize over multiple chromophores. This facilitates the quantum jumps between
excitons. Quantum walks can give an exponential speedup over classical walks due to interference which
speeds up the energy transfer [47]. In the next section, we give the theoretical framework for digital
quantum simulation of the dynamics of the FMO complex using the general solution, equation (16), of the
master equation developed in section 3.2.

8
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Figure 1. Representation of the 7 chromophore system of the FMO complex, the lines represent the dominant couplings
between the sites. Site 6 and 1 represent the chromophores which receive energy from the light antenna, site 4 and 3 represent the
sink which is connected to the reaction centre, and site 5, 7, and 2 represent the chromophores which form the intermediate path
of the channel. Energy is transported from site 1 and 6 to site 3 and 4 via site 5, 7 and 2. The two dominant pathways are
(1 → 2 → 3) and (6 → (5, 7) → 4 → 3).

4.2. Theoretical model for simulating FMO complex
The quantum jumps, analogous to Lindblad operators, equation (30) show delocalised exciton transport
and can be represented as follows. Say, the system is in the exciton state |M〉. If the probability of quantum
jump to state |N〉 in time

√
Δt is γM→N (obtained from Γk(ω)), for any |N〉 �= |M〉, then the Kraus

operators for quantum jumps from |M〉 are given by:

MMN =
√
γM→N |N〉〈M| for all N �= M

MMM =

√
1 −

∑
N �=M

γM→N |M〉〈M|. (33)

Similar operators can be given for jumps from all such |M〉. Using the general model, equations (14) and
(16), the dynamical equation for the FMO complex is given by (U = exp

(
− iHcΔt

�

)
),

ρ(t +Δt) =
∑

M

⎡
⎣MMMUρ(t)U†M†

MM +
∑

N �=M

(
MMNρ(t)M†

MN + MMMUρ(t)U†M†
NN

)⎤⎦ . (34)

As proven in section 3.3, this equation is the solution for the Lindblad equation for ENAQT in FMO
complex. It should be noted that the last term in this equation is the decoherence term and the first and
second terms are due to the quantum jumps. The evolution is trace preserving (

∑
i,j M

†
ijMij = 𝟙). This is the

theoretical model for digital quantum simulation of the FMO complex.

4.3. Numerical simulation
Equations (34) and (27) represent evolution of the density matrix in the FMO complex. To verify the
effectiveness of these models, we simulate them numerically and present the results. Evolution of
population densities at different sites is calculated using equation (34).The step size (Δt) is chosen to be
10 fs, as observed coherence time is ∼300 fs and exciton relaxation time is ∼70 fs [16]. For the numerical
simulation, the value of the system Hamiltonian is taken from [21]. The quantum jump rates between
excitons are calculated from relaxation data presented in [49], using theoretical analysis given in [21, 44].

4.3.1. Result: high efficiency of energy transfer
In figures 2 and 3 we show the evolution of population densities when the initial excitation is at site 1
(figure 2) and site 6 (figure 3). The efficiency attained (sum of population on site 3 and site 4 at t = 4 ps) is
∼98 percent. It is in agreement with theoretical evidence presented in [22], by using master equation
model, equation (29). It can also be seen from the graphs that transfer happens faster if the initial excitation
is at site 6, as observed experimentally in [44].
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Figure 2. Time evolution of the population at each site in the FMO complex calculated using equation (34). Initial excitation at
site 1, efficiency achieved = 98%.

Figure 3. Time evolution of the population at each site in the FMO complex calculated using equation (34). Initial excitation at
site 6, efficiency achieved = 98.3%.

4.3.2. Directionality in the quantum walk
In the FMO complex, directionality of energy transport is given by quantum jumps which cause the transfer
of exciton from initial sites towards the sink. To show this, we simulate the evolution in absence of quantum
jumps (figure 4 and 5). As we can see, the population just oscillates between initial strongly coupled sites,
that is it stays at the initial exciton. This is caused by Anderson localization due to disorder in the
Hamiltonian of the FMO complex. Quantum jumps help overcome the trapping of exciton due to
Anderson localization by transferring the population between different excitons. The probabilities of
quantum jumps are greater in the direction from initial site towards the final site, thus giving directionality
to the walk. Compared to these figures, the simulations with quantum jumps (figures 2 and 3) show exciton
transport. The role of noise in ENAQT is also illustrated in [50].

4.3.3. Result: dependence on environment temperature
The dynamics of the FMO complex are temperature dependent. The phonon couplings vary with
temperature and the coupling strength can be seen to increase as the temperature increases, equation (31).
The dynamics in the FMO complex have been observed up to ambient temperatures. At lower
temperatures, the coupling strength is a fraction of the maximum coupling constants. This can be digitally
simulated by the dynamical equation with tunable bath coupling, equation (27). In figures 6 and 7 we show
the results of simulations with different phonon couplings, equation (27). For χ = 0.06 the evolution of
population densities at different sites are shown when the initial excitation at site 1 (figure 6) and site 6
(figure 7). In figure 6 it can be seen that there is an initial oscillation of population between site 1 and 2.
This is due to the high coupling between these two sites which causes the exciton over site 1 to delocalise to
site 2. Slowly this oscillation dies, as quantum jumps cause the population to move towards the sink at sites
3 and 4, whose population starts rising. There is some population at site 7 as well, which serves as the
connecting link between different sites (as can be seen in figure 1). As compared to figure 2, there is an
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Figure 4. Time evolution of the population at each site in the FMO complex under purely coherent effects. Initial excitation at
site 1.

Figure 5. Time evolution of the population at each site in the FMO complex under purely coherent effects. Initial excitation at
site 6.

Figure 6. Time evolution of the population at each site in the FMO complex calculated using equation (27). Initial excitation at
site 1, χ = 0.06.

enhanced effect of quantum dynamics (coherence between site 1 and 2) visible in figure 6. This is expected
since the strength of the bath coupling is lower for χ = 0.06, leading to suppression of environment
induced quantum jumps. Similar dynamics can be seen in figure 7 where there is an initial oscillation of
population between site 6 and site 5. This population is slowly transported towards the sink at site 3 and 4.

Figures 6 and 7 represent the dynamics in the FMO complex at 77 K. These results can be matched with
the dynamics obtained in previous theoretical study [51]. We can see that the results of calculations done
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Figure 7. Time evolution of the population at each site in the FMO complex calculated using equation (27). Initial excitation at
site 6, χ = 0.06.

using the discrete time evolution model of equations (34) and (27) match with theoretical [22, 51] and
experimental studies [44] done on the FMO complex.

4.4. Quantum circuit for implementation of the model
The usual method for implementation of the FMO complex is to treat each site (position basis) on a
separate qubit, whose excitation from the ground state |0〉 to excited state |1〉 using creation operator (a†)
depicts population at that site. This requires n qubits with and Hilbert space of the dimension 2n for
implementing a quantum system with n sites. However, the Hamiltonian of the system, equation (28) has
dimension n. Mapping the Hamiltonian to the expanded basis for implementation requires complex
calculations and often multiple techniques have to be employed for simulation. Additionally, for
implementing the non unitary part of evolution, each qubit of the system uses an ancilla qubit to capture
dephasing of the qubit. This approach gives an O(n) space complexity of implementation.

However, simulation of the framework presented in this paper can be done on a smaller qubit space. The
FMO complex represents a seven site system and the state of exciton on the sites can be represented by a
Hilbert space with dim = 7. Minimum number of qubits required for simulating this is log 7� = 3. The
seven exciton states can be represented as,

E1 = |001〉 E5 = |101〉

E2 = |010〉 E6 = |110〉

E3 = |011〉 E7 = |111〉.

E4 = |100〉

(35)

We can implement one quantum jump, say from exciton state Ei to Ej as

ρ→ γi→j|j〉〈i|ρ|i〉〈 j|, (36)

where |i〉 represents exciton Ei and γi→j is probability of quantum jump from state Ei to Ej.
Overall, the dynamics can be represented as,

|i〉|0〉B →
√

1 − γi→j|i〉|0〉B +
√
γi→j|j〉|1〉B. (37)

We can modify it to include another bath qubit as,

|i〉|0〉B1 |0〉B2 →
√

1 − γi→j|i〉|0〉B1 |0〉B2 +
√
γi→j|j〉|1〉B1 |1〉B2 . (38)

This can also be written as,

|0〉B1 |i〉|0〉B2 →
√

1 − γi→j|0〉B1 |i〉|0〉B2 +
√
γi→j|1〉B1 |j〉|1〉B2 . (39)

The above is for one quantum jump. We can trace out the second bath qubit and obtain the Kraus
operators,

Mij
0 = (

√
1 − γi→j)|0, i〉〈0, i|+ |1, i〉〈1, i|+ IB1 ⊗

∑
m �=i

|m〉〈m|, (40)
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Figure 8. Quantum circuit for implementing one quantum jump from exciton |1〉 → |2〉 of the FMO complex. s1, s2, s3

represent the system. Each exciton state is |s1s2s3〉. For example, |1〉 = |001〉. B1 and B2 are the bath qubits.

Mij
1 =

√
γi→j|1, j〉〈0, i|, (41)

where |p, q〉 = |p〉B1 |q〉, for p ∈ {0, 1} and q ∈ [1,7]. The above Kraus operators for one quantum jump
leave all states |m〉 �= |i〉 and the state |1, i〉 unchanged and implement the quantum jump from
|0, i〉 → |1, j〉. Each step of the evolution consists of multiple quantum jumps, which can be represented as,

1st jump (from |1〉 → |2〉):

M0 = (
√

1 − γ1→2)|0, 1〉〈0, 1|+ |1, 1〉〈1, 1|+ IB1 ⊗
∑
m �=1

|m〉〈m| M1 =
√
γ1→2|1, 2〉〈0, 1|

2nd jump (from |1〉 → |3〉):

M0 = (
√

1 − γ1→3)|0, 1〉〈0, 1|+ |1, 1〉〈1, 1|+ IB1 ⊗
∑
m �=1

|m〉〈m| M1 =
√
γ1→3|1, 3〉〈0, 1|

3rd jump (from |1〉 → |4〉):

. . .

. . .

7th jump (from |2〉 → |1〉):

M0 = (
√

1 − γ2→1)|0, 2〉〈0, 2|+ |1, 2〉〈1, 2|+ IB1 ⊗
∑
m �=2

|m〉〈m| M1 =
√
γ2→1|1, 1〉〈0, 2|

8th jump (from |2〉 → |3〉):

M0 = (
√

1 − γ2→3)|0, 2〉〈0, 2|+ |1, 2〉〈1, 2|+ IB1 ⊗
∑
m �=2

|m〉〈m| M1 =
√
γ2→3|1, 3〉〈0, 2|

. . .

. . .

. . .

42nd jump (from |7〉 → |6〉):

M0 = (
√

1 − γ7→6)|0, 7〉〈0, 7|+ |1, 7〉〈1, 7|+ IB1 ⊗
∑
m �=7

|m〉〈m| M1 =
√
γ7→6|1, 6〉〈0, 7|.

(42)

The following proof shows that sequentially implementing these jumps captures the Markovian evolution of
the system under multiple quantum jumps. Consider any two quantum jumps |u〉 → |v〉 and |w〉 → |x〉.
Sequential application of Kraus operators gives,

ρ̃ = Muv
0 (ρ(0))Muv

0
†
+ Muv

1 (ρ(0))Muv
1

†

ρ(t) = Mwx
0 (ρ̃)Mwx

0
†
+ Mwx

1 (ρ̃)Mwx
1

†
,

(43)
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Figure 9. Each step of evolution, denoted by a ‘step’ operator consists of multiple quantum jumps. Thus, the ‘step’ operator is
equivalent to the circuit given in figure 10.

where Muv
0/1 are Kraus operators for jump from |u〉 → |v〉. Thus,

ρ→ Mwx
0 Muv

0 (ρ)Muv†
0 Mwx†

0 + Mwx
0 Muv

1 (ρ)Muv†
1 Mwx†

0

+ Mwx
1 Muv

0 (ρ)Muv†
0 Mwx†

1 + Mwx
1 Muv

1 (ρ)Muv†
1 Mwx†

1 . (44)

Now for general {u, v} �= {w, x}, using equation (40)

Mwx
0 Muv

0 = (
√

1 − γw→x)|0,w〉〈0,w| + (
√

1 − γu→v)|0, u〉〈0, u|+
∑

m �=w,u

IB1 ⊗ |m〉〈m|

Mwx
0 Muv

1 = (
√
γu→v)|1, v〉〈0, u|

Mwx
1 Muv

0 = (
√
γw→x)|1, x〉〈0,w|

Mwx
1 Muv

1 = 0.

(45)

We can see that Mwx
0 Muv

1 and Mwx
1 Muv

0 represent the quantum jumps and Mwx
0 Muv

0 gives the population that
remains for coherent evolution. This is exactly like the general model of ENAQT developed in the paper.
The above operators are calculated for {u, v} �= {w, x}. Similar calculations can be done when this
condition does not hold. Thus, sequentially applying Kraus operators gives the Markovian evolution of the
system, as described by ENAQT for two quantum jumps. The same argument can be extrapolated for
multiple quantum jumps implemented one after the other.
In the procedure described above, |0〉B1 is entangled with the population remaining after quantum jumps
and |1〉B1 is entangled with the part of system capturing quantum jumps.
The coherent evolution due to Hamiltonian of the system can be implemented at the end of all quantum
jumps using state |0〉B1 as,

C = |0〉B1〈0|B1 ⊗ U + |1〉B1〈1|B1 ⊗ I, (46)

where C is the unitary operator that acts on B1 and the system to evolve the coherent part of density matrix

(entangled with |0〉B1 ) under unitary evolution U = e−i Hc
�

t .
B1 is traced out at the end to complete one step of evolution with both coherent evolution and multiple
quantum jumps.
The main advantage of using two bath qubits is that it helps us implement simultaneous quantum jumps
sequentially. This greatly simplifies the simulation procedure. Overall, the second bath qubit is used to
implement quantum jumps and the first bath qubit is used to implement coherent evolution. The first qubit
is traced out after one complete step of evolution consisting of coherent evolution and multiple quantum
jumps (which are implemented by tracing out the second bath qubit after each quantum jump and resetting
it to |0〉B2 ).
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Figure 10. Quantum circuit for implementing multiple quantum jumps from exciton |i〉 → |j〉 for i, j ∈ [1,7]. The whole circuit
makes one step of evolution.

Figure 11. Complete evolution of the FMO complex can be implemented using multiple ‘step’ operators. The state is initialized
in qubits s1, s2, s3. Operator ‘D’ transforms the state from position basis to exciton basis. After simulation, the operator ‘D−1’s
rotates the final state back to position basis. Final state can be measured my measuring the system qubits.

The circuit for simulating one quantum jump is given in figure 8. Here, an example is given for quantum
jump from |1〉 → |2〉. R1,2

y (θ) is the rotation about y-axis on the Bloch sphere such that

R1,2
y (θ)|0〉B2 = cos θ

2 |0〉B2 + sin θ
2 |1〉B2 and sin θ

2 =
√
γ1→2. The evolution of state under these operations is,

First gate:

|0〉B1 |001〉|0〉B2 →
√

1 − γ1→2|0〉B1 |001〉|0〉B2 +
√
γ1→2|0〉B1 |001〉|1〉B2 .

Second gate:
√
γ1→2|0〉B1 |001〉|1〉B2 →

√
γ1→2|1〉B1 |010〉|1〉B2

which can also be written as (using eq.(35))
√
γ1→2|0〉B1 |1〉|1〉B2 →

√
γ1→2|1〉B1 |2〉|1〉B2 .

(47)

The circuit for simulating one step (figure 9) of evolution of the FMO complex is given in figure 10,
constructed by composing quantum jumps sequentially.

Figure 11 shows the complete circuit diagram for multiple steps. Apart from the quantum jumps and
coherent evolution, there is an initial gate (D) which transforms the basis from position to excitons which is
inverted at the end before measurement of population at different sites. This is done to aid our calculations
for quantum jumps which are done in the exciton basis. The gaps between steps in B1 qubit are to indicate
that it is traced out at the end of each step and reset to |0〉B1 at the beginning of the next step

4.4.1Complexity analysis.
Number of gates: To analyse the complexity in terms of number of gates, we need a to decompose multi
qubit gates to elementary gates. Thus, for single quantum jump, figure 8 can also be drawn as figure 12. We
can see that we require log n gates for the first gate [equation (47)] and log n gates for the second gate
[equation (47)]. Similar decomposition can be done for all quantum jumps shown in figure 10.

There are n(n − 1) quantum jumps, each of which requires 2 log n gates. This gives O(n2 log n) gates for
implementing quantum jumps. There is one gate for implementing the coherent evolution. Decomposition
of unitary evolution in terms of elementary gates will take O(n) gates (decomposition of arbitrary unitary
gate over q qubits takes O(exp(q)) gates, and we have q = log n qubits). Thus the gate complexity for
implementing one step of evolution is O(n2 log n). The number of gates is also smaller than needed in
traditional Stinespring dilation of quantum channels which often need O(n6) gates [52]. The total
complexity for complete evolution for time = T is O

(
T
Δt n2 log n

)
, where one time step = Δt.

Number of qubits: We have used log n qubits for simulating the system and 2 bath qubits. Additionally,
we use log n ancillas for simulating multi qubit control gates. Thus we need O(log n) qubits for simulating
the FMO complex. The extra qubits can be avoided by using Suzuki–Lie Trotter decomposition of the gates.
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Figure 12. Operators for a single quantum jump from |1〉 → |2〉, given in figure 8 are decomposed into elementary operators for
analyzing the complexity. a1, a2 represent the ancilla introduced in the circuit to implement multi qubit controls using two qubit
control operators.

We have provided a model for digital quantum simulation of energy transfer in open quantum systems
(the approach can be applied to systems other than FMO complex). The alternate to such simulations is to
use a Stinespring dilation for getting a unitary quantum evolution of system and bath which can
simultaneously implement the quantum jumps. An approximate decomposition of the unitary evolution as
elementary one and two qubit gates is then obtained using techniques like Suzuki–Lie Trotter
decomposition. Or each site is treated on a separate qubit along with an ancillary qubit and the effective
evolution is mapped on a larger Hilbert space of 7 qubits (dim = 27) + 7 ancilla qubits. However, our
framework only uses log 7� = 3 qubits thus giving a log-reduction in space. There is also a huge reduction
is space of ancillary qubits from O(n) or O(log n) to just 2 qubits. This reduction in complexity from
poly(n) to O(1) gives the absolute minimum space complexity that can implement the bath.

Thus, the discrete time evolution equation, together with a rather straightforward way of varying the
coupling strength of environment provides an optimal method to digitally simulate environment assisted
transport in open quantum systems.

5. Concluding remarks

We have developed a theoretical framework for digital quantum simulation of the ENAQT in open
quantum systems in the discrete-time density matrix evolution formalism. We modelled ENAQT into an
open quantum systems and developed a methodology to solve the Lindblad master equation for ENAQT.
We have obtained evolution operators, equation (14) to capture the interplay of quantum coherence and
quantum jumps. Using the obtained evolution equation, equation (16) and the operators, we have proved
its equivalence to the Lindblad master equation. We have shown that our approach is an improvement over
the conventional numerical solution in which the quantum and dissipative effects are simulated separately.
We applied the general solution of ENAQT master equation to simulate the FMO complex using delocalised
exciton transport. Then, we generalised it to capture temperature dependence as variable strength of
phonon coupling. We have demonstrated that calculations done on our model are in good agreement with
experimental and theoretical evidence. Our model can be used to simulate the FMO complex dynamics for
different temperatures and conditions. We presented the quantum circuit model for it is implementation
that gives a log reduction in complexity.

Open quantum system are generally described using master equations for which solutions are otherwise
not known. The solution of the master equation we developed can have great scope for applications to
digital quantum simulation of ENAQT. The model can be used to understand noise assisted transport in
quantum simulators. It could help in developing systems with tunable level of noise. It can also be applied
to study artificial photovoltaic quantum systems and quantum communication channels to achieve desired
efficiency and other properties. The methodology developed to solve the Lindblad equation for ENAQT can
be valuable in developing solution of master equation for other processes. It could be used to model
multiple noise effects in complex systems with diverse sources of environmental interactions. Modelling
effects such as depolarization and damping in open quantum systems, can be subjects for further research
work. This can help in further developing the theory of digital quantum simulations. Another interesting
line of work can be exploring the experimental implications of our work on developing quantum
simulators. The framework presented in this paper and it is associated log-space reduction in complexity
can be especially useful for simulating large scale systems.
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