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Abstract
Quantum walks are known to propagate quadratically faster than their classi-
cal counterparts and are used to model dynamics in various quantum systems.
The spread of the quantum walk in position space shows anomalous diffusion
behavior. By controlling the action of quantum coin operation on the corre-
sponding coin degree of freedom of the walker, one can demonstrate control
over the diffusion behavior. In this work, we report different forms of coin oper-
ations on quantum walks exhibiting anomalous diffusion behavior. Homoge-
neous and accelerated quantum walks display superdiffusive behavior, whereas
uncorrelated static and dynamic disorders in the evolution induce strong and
weak localization of the particle indicating subdiffusive and normal diffusive
behavior. The role played by the interference effects in the spreading of the
walker has remained elusive and our aim in this work is to present the interplay
between quantum coherence and mean squared displacement of the walker. We
employ two reliable measures of coherence for conclusively establishing the
role of quantum interference as the driving force behind the anomalous diffusive
behavior in the dynamics of quantum walks.
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1. Introduction

In many complex systems, diffusion may not admit to Gaussian statistics, thereby limiting
Fick’s law to describe their transport behavior. A deviation from the Markovian nature of
the underlying stochastic process naturally implies a corresponding withdrawal of linear time
dependence on mean squared displacement, 〈r2(t)〉 ∼ t. The hallmark of anomalous diffu-
sion lies in the non-linear relationship of mean squared displacement with the time leading
to a power-law pattern, 〈r2(t)〉 ∼ tα, with α �= 1. This non-Brownian behavior is ubiquitous
to a wide variety of systems ranging from liquid crystals, glasses, polymers, organelles, and
even dynamics of ecosystems [1–5]. Classical random walks have played an important role in
modeling the dynamics in many of these complex systems. Extending such models to predict
the dynamics of quantum systems necessitated the usage of quantum walks. Viewed from the
lens of quantum walks, our interest here is in both cases when α > 1, namely when enhanced
diffusion prevails and also while α < 1, underlining the extent of localization.

The origin of quantum walks bears roots in modeling the dynamics of physical particles
moving on regular lattices, often termed as quantum diffusion [6, 7]. The surge in research
interest towards quantum walks, later on, was fueled by their ability to expand quadratically
faster in configuration space [8]. This leverage has been fruitfully exploited in the quest for
improving various quantum algorithms [9–12] and machine learning [13]. Recently, several
experiments confirm the anomalous diffusive properties of quantum walks [14, 15]. It is only
natural then to seek a characterization for their anomalous behavior. Furthermore, these walks
are at the heart of quantum technology since they offer controllability in terms of experimen-
tally tunable parameters, enabling the simulation of a variety of quantum phenomena such as
transport problems [16], relativistic quantum dynamics [17, 18], and neutrino oscillation [19].

Classical random walks are purely Markovian processes with their variance increasing lin-
early with the number of steps. On the other hand, their quantum analogs enjoy the features that
are inaccessible to the classical realm such as quantum superposition and interference, helping
in a faster (or slower) spreading. This suggests that the quantum speedup (or slowdown) is due
to the arrangement of amplitudes of interfering paths and the underlying dynamics are a col-
lective result of the constructive and destructive interference. In fact, it was analytically shown
that the quadratic increase in the variance of the quantum walker is a direct consequence of
quantum coherence [20]. Nevertheless, a conclusive argument to establish a direct correlation
between coherence and variance of a quantum walker remains to be made. Our work closely
looks at exemplifying this crucial difference between the coherence of classical and quantum
walks and subsequently demonstrates the role of coherence in exhibiting anomalous diffu-
sion in quantum walks. We take the examples of homogeneous, accelerated, and disordered
quantum walks in characterizing anomalous diffusion using quantum coherence.

This paper is organized as follows. We begin with an introduction to the kinds of walks
considered for this study in section 2. The main results of our analysis on anomalous diffusion
of quantum walks are outlined in section 3. Its relationship with coherence is extensively dis-
cussed using two suitable measures in section 4. We conclude with a broad summary of the
work in section 5.
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2. Discrete-time quantum walks and anomalous diffusion

2.1. Homogeneous quantum walks

Discrete-time quantum walk in one-dimensional space is defined on a composite Hilbert space
H comprising of a coin degree of freedom Hc and a position degree of freedom Hp so that
H = Hc ⊗Hp. Here the coin Hilbert space is spanned by the two internal degrees of freedom of
the walker, denoted as {|↑〉, |↓〉}, while the position Hilbert space Hp has {|x〉} where x ∈ Z as
its basis. The dynamics of the quantum walk evolution is defined using action of quantum coin
operation on Hc followed by a conditioned position-shift operation on the composite space H.
Coin operation on walker will evolve the particle into the superposition of the internal degree
of freedom. A generalized coin operator can be written as an arbitrary SU(2) matrix of the form
[21],

Ĉ(ξ, η, θ) ≡
(

eiξ cos θ eiη sin θ

−e−iη sin θ e−iξ cos θ

)
. (1)

A rich family of walks can be unfolded by appropriate modifications to the coin operation
Ĉ. In this work, we consider a simpler version of the coin operator for defining the homoge-
neous walk, denoted by Ĉ(θ) ≡ Ĉ(ξ = 0, η = π/2, θ). The coin operation is followed by the
conditioned position shift operation which carries the superposition initially endowed on the
internal degree of freedom to the position space of the walker. The operator conditioned on
internal state of the particle will be of the form,

Ŝx ≡
∑
x∈Z

(
|↑〉〈↑| ⊗ |x − 1〉〈x|+ |↓〉〈↓| ⊗ |x + 1〉〈x|

)
. (2)

Therefore, the unitary evolution operation for each step of the walk is given by Ŵx(θ) ≡ Ŝx ·[
Ĉ(θ) ⊗ I

]
and after t-time steps, state of the system is

|ψt〉 = [Ŵx(θ)]t|ψ0〉. (3)

Here the initial state is,

|ψ0〉 = (c1|↑〉+ c2|↓〉) ⊗ |x = 0〉, (4)

with c2
1 + c2

2 = 1. We choose c1 = c2 =
1√
2

in the following discussions. The coin parameter

θ controls the variance σ2 of the probability distribution in the position space [21] and this
distribution spreads quadratically faster (σ2 ≈ [1 − sin(θ)t2]) in position space when compared
to the classical random walk [8].

2.2. Disorder inducing quantum walks

From the equation (3), it is clear that a time-translation symmetry is inbuilt in the evolution of
a homogeneous walker. Introducing a dynamic disorder by randomly changing the action of
coin operator at each discrete time step breaks this symmetry and subsequently leads to a local-
ization of the particle in position basis [22–27]. By the same token, one may plug in a static
disorder by operating a random coin rotation at each position to severely localize the particle.
While the temporal disorder in quantum walk leads to a weak localization, the spatial disor-
der is known to induce Anderson localization [28–31]. Such disruption from the homogene-
ity present in standard quantum walks could be detrimental to optimizing search algorithms.
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On the contrary, both of these disorders have been studied extensively in enhancing the entan-
glement and non-Markovianity generated between the internal and external degrees of freedom
[32, 33].

We consider two uniform probability distributions based on two independent identically
distributed random variables, denoted by θ̃t and θ̃x , for modeling the temporal and spatial dis-
orders, respectively. This form of white noise borrowed from classical Markovian processes
performs imperfect rotations of the form e−ĩθσx . We remark here that these can be modeled as
classical noises rather than those brought upon by genuine system-bath interactions.

While simulating the temporal disordered quantum walk, we have used a random θt at each
step from the uniform distribution of θ̃t defined over the range [0,π]. The final state after t
time-steps corresponds to |ψt〉 =

Ŵx(θ̃t)|ψ0〉 = Ŵx(θt)Ŵx(θt−1) . . . Ŵx(θ1)|ψ0〉. (5)

Likewise, we define the spatial disorder in DTQW evolution by acting random θx ∈ [0, π] at
each position, thereby involving a position dependent coin operation in the walk unitary [29],

Ŵ θ̃x
= Ŝx ·

(∑
x

Ĉ(θx) ⊗ |x〉〈x|
)
. (6)

Assuming a plane wave solution for the wavefunction ψx,t = e−i(kx−ωt), the group velocity
of a disordered walker would boil down to a summation of uniform random values in [−1, 1]
which is then averaged over either all instances of time t in case of temporal disorder, or 2t + 1
positions in case of spatial disorder. While this may add up to a negligible positive number for a
smaller number of steps, it is evident that in the asymptotic limit, the mean group velocity drops
to zero in both cases: lim

t→∞
〈vSD/TD

g 〉 ≈ 0 leading to localization. Mean group velocity settles

to zero faster for a walk with spatial disorder resulting in Anderson localization compared to
temporal disorder which leads to a weak localization [25, 34]. The localization length is usually
a function of the coin parameter θ given as ξ = −[ln(cos θ)]−1 [31, 35].

2.3. Accelerated quantum walks

Introducing an exponentially decaying parameter in the rotational angle of the coin results
in a walk whose mean square deviation (MSD) exceeds that of the homogeneous one, thereby
making the dynamics ‘accelerated’. Denoting the coin parameter in the homogeneous quantum
walk as θ0 in equation (1), it is turned into a step-dependent operation of the form θ = θ0 e−at

with the parameter a deciding how quickly the walk turns fully ballistic. Thus the spread is
bounded below by t cos(θ0) and the wider spreads are achieved by modulating positive values
for a. Consequently, larger a values lead to a faster spread with the standard deviation attaining
the maximum of t. As time goes by, ballistic fronts run away much faster than the spreading
of the classical or even normal quantum walk diffusive evolution. This time-dependent coin
operation has been previously explored in the context of enhancing the entanglement between
the spin and positional degrees of freedom of the accelerated walker [36, 37].

The probability distributions for all these walks at a site x after t steps is given by

px,t = |ψ↑
x,t|2 + |ψ↓

x,t |2. (7)

This is plotted for all walks after 100 steps with the zeros of the distribution removed as shown
in figure 1. The accelerated quantum walk (AQW) with a = 0.02 and θ0 = π/4 results in a
distribution with two peaks at either end of lattice, making it wider than that of homogeneous
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Figure 1. Probability distributions for all four walks described in section 2 is plotted
for 100 steps. Vanishing intermediate points in the probability distribution are removed.
Maximum spread is visible in accelerated walk followed by the homogeneous one, while
prominent localization is seen in temporal and spatial disordered walks. For homoge-
neous walk a coin parameter θ = π/4 has been chosen, while keeping θ0 = π/4 and
a = 0.02 for the accelerated walk. To minimize the biases arising from randomness in
choosing the coin parameter, an average over 100 trials was determined for temporal
and spatial disordered walks. Plots in this work can be assumed to follow the same
specifications for all the mentioned walks, unless specified otherwise.

(HQW) and disordered walks. Simulated over 100 trials to weed out the biases, the spatial
(SDQW) and temporal disordered (TDQW) walks are localized near the origin. The homoge-
neous discrete-time quantum walk with θ = π/4 is neither localized nor fully ballistic. The
symmetric distribution in the probability of position space is due to the equal superposition of
basis states at the initial step.

3. Anomalous behavior

The MSD can be evaluated using the moments of position space as

〈r2〉 = 〈x2〉 − 〈x〉2, 〈xn〉 =
∑

x

xn px,t. (8)

The standard deviation σ is then identified as the square root of MSD [38].
In a one-dimensional Brownian diffusive process for an initially localized wavepacket, the

MSD grows linearly in time, 〈r2〉 = Dt with D being the diffusion constant. Anomalous dif-
fusion is characterized by non-linear diffusive growth with α being the exponent. For the
growth of α > 1, we turn to the regime of superdiffusion as it ensures faster than classical
diffusion. Conversely, an α < 1 implies a limited movement of the walk stemming from a
localization-inducing potential.
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Figure 2. MSD from equation (8) is plotted against the 100 time-steps for various kinds
of discrete-time quantum walk explored in section 2 with the same parameters used
for plotting figure 1. Homogeneous and accelerated walks are naturally superdiffusive,
while the disorders impede group velocity of the particle forcing natural diffusion and
subdiffusion.

This classification for quantum walks can better be viewed in figure 2 where the growth of
variance is visualized over time. After 100 steps of each type of evolution described in the pre-
vious section, the variance is seen to grow non-linearly with the number of steps. As expected
from figure 1, the accelerated walk leads with the highest variance, while that of the homoge-
neous walk comes close to it. Both of these walkers clearly maintain an α > 1 positing them
as superdiffusive. Higher values of a in accelerated walk correspond to the faster interspersal
of the particle in position space leading to a larger deviation from the normal quantum walk as
is evident from the evolution of 500 steps in figure 3.

The spatial disordered walks fall into the domain of subdiffusion as can be derived from
figure 2. The localization in the position space is a glaring indication of its lesser than classical
variance, thereby fixing an α < 1. The reason for the halting of spreading during evolution
is due to the group velocity of waves approaching zero, as discussed previously. For finite
timesteps, the variance for the walk having temporal disorder results in normal diffusion behav-
ior identical to classical random walk but at the asymptotic limit from the point where group
velocity becomes almost zero we expect a deviation towards subdiffusive behavior.

In figure 4 we have shown the logarithmic scale of MSD shown in figure 2 and the approx-
imate values of α are 1.85, 1.64, 0.99 and 0.68 for accelerated, homogeneous, temporal disor-
dered, and spatial disordered quantum walks, respectively. The argument for quantum walks
being radically different from classical walks can be further strengthened with the following: a
quantum walker whose coin or positional degree of freedom is iteratively measured after each
step results in a classical random walk. Suppose we begin with a localized position state |0〉,
and repeatedly perform Hadamard operation H ≡ Ĉ(0, 0, π/4) on the coin space, the resulting
transformation after one such step will be,

|↓〉 ⊗ |0〉 H−→ 1√
2

(|↑〉 − |↓〉) ⊗ |0〉 (9a)
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Figure 3. Variance for accelerated walk is compared against homogeneous (a = 0) for
500 number of timesteps with the parameters as specified in the legend. Modulating the
values of a results in varying curvature α.

Figure 4. Approximate α values for the walks in the order of legends: 1.85, 1.64, 0.99,
0.68, 1. For the time scale we have plotted, we can seen a clear overlap of temporal
disordered quantum walk with the classical random walk showing a normal diffusive
behaviour.

S−→ 1√
2

(|↑〉 ⊗ | − 1〉 − |↓〉 ⊗ |1〉). (9b)

A subsequent measurement on the coin space in the standard basis leaves the states {|↑〉⊗
| − 1〉, |↓〉⊗|1〉} with probability of 1/2 each and thus destroys the interference in the position
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space. Continued measurements effectively reset the walker destroying the quantum advan-
tage held in the form of correlations in position space. Thus, after t such steps the distribution
approaches a Gaussian centered around zero with a variance of t resembling a classical ran-
dom walk. We should note that though the variance with subsequent measurement and finite
time temporal disorder result in variance identical to classical random walk, in the latter case
quantum interference persists.

4. Measures of coherences

One of the distinguishing features of quantum walks is the presence of quantum interference
effects. The dynamics of a quantum walker in discrete-time walks is akin to a multi-path
interference as it evolves in position space involving interference of amplitudes of multiple
traversing paths. The absence of such effects would manifest as a purely classical walk or a
directed transport behavior, as previously noted. It is natural to probe the role of interference
in displaying the discussed anomalous behavior. To that end, we apply suitable quantifiers of
interference and compare their behavior across the quantum walks described in section 2.

Central to all experimental setups involving two slits or two paths, visibility is usually
deemed as the straightforward measure of coherence of waves [39]. Following the need for
a similar quantity to capture interference occurring in physical systems involving more num-
ber of interfering paths or particles, a number of studies found quantum coherence to be the
analogous figure-of-merit [40, 41]. The notion of coherence is routinely harnessed in experi-
ments of quantum optics and quantum technology [42–44]. Here, we make use of the rigorous
framework introduced for adopting quantum coherence as a physical resource [45]. Based on
the conditions that a valid measure of coherence must be vanishing on any incoherent set of
states, monotonic under the action of incoherent quantum channels, and non-increasing under
the mixing of quantum states, it was conclusively established that relative entropy of coher-
ence CRE and l1-norm based coherence Cl1 were the only general measures satisfying all three
criteria [45]. We restrict ourselves in determining the values of these bona fide measures of
coherence for our walks of interest.

4.1. l1-norm coherence
The l1-norm based measure is a widely used quantifier of coherence given by the absolute
sum of off-diagonal elements of the density matrix associated with the state of the system ρ:
Cl1 (ρ) =

∑
j�=k|ρ j,k| where ρ j,k = 〈 j|ρ|k〉. A normalized version of this definition applicable to

arbitrary dimensions was later proposed as [46],

C′
l1

(ρ) =
1

n − 1

∑
j�=k

|ρ j,k|. (10)

From here onwards, we use the normalized l1 coherence for further analysis with the relabeling
C′

l1
≡ Cl1 . The degree of quantumness is intuitively ascribed to the off-diagonal terms and the

measure at hand succinctly reflects that. Furthermore, this measure meets all the criteria defined
for claiming any quantity is equivalent to visibility by [47]. Accordingly, one can think of
normalized coherence as an extension of visibility for multi-path interference.

The evolution of the combined system at each step of the walk is governed by the walk
unitary W and the resulting joint density matrix will be ρt = Ŵtρ0(Ŵ†)t with ρ0 ≡ ρc(0) ⊗
ρp(0) = |ψ0〉〈ψ0| from equation (4). Since we are interested in the diffusion of wavepacket in
the position space only, we trace out the coin degrees of freedom for calculating the coherence
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Figure 5. l1-norm based coherence for position space is plotted against the number of
steps for all the walks described in section 2. The parameters are fixed at the same value
as used for figure 1. Homogeneous and accelerated walks display higher coherence in
comparison to disordered walks, just as expected.

left in the positional degree of freedom,

ρp(t) ≡ Trc[ρt] = Trc[Ŵtρ0(Ŵ†)t]. (11)

Each step of the quantum walk unravels two sites on both ends of one-dimensional lattice, thus
accumulating 2t + 1 number of positions after t steps. Noting down that density matrices are
Hermitian, we can simplify the equation (10) to a form involving the absolute values of only
upper (or lower) triangular entries,

C′
l1

(ρp) =
1
t

∑
j>k

|(ρp) j,k| . (12)

Note that this equation is proportional to 1/t and hence coherence values will eventually pre-
cipitate to zero. Thus it is enough to overview the normalized coherence as in equation (12)
for the first few steps, say 100, for establishing the role of interference in spreading.

As is evident from figure 5, the walks displaying superdiffusive behavior, namely homo-
geneous and accelerated walks, amass higher coherence values than that of disordered subd-
iffusive walks. Although all the walks are initialized uniformly, the coherence values show a
distinctive behavior in the first few steps themselves. The effect of 1/t in equation (12) begins
to dominate the coherence in walks soon after a few steps. For quantum walks which returns
classical random walk behavior due to subsequent measurement in coin space after every step,
it is straightforward to note that the coherence will be zero. Due to less spread in position
space for disordered quantum walks, coherence is very low compared to the homogeneous
and AQWs. The decline in the coherence of accelerated walk can be attributed to a decrease
in the spread of amplitude in position with an increase in the number of steps. The rate of
descent in coherence values is inversely related to the acceleration parameter a. It is shown in
figure 6 by extending the evolution to 500 steps. For higher values of a, the walker quickly

9



J. Phys. A: Math. Theor. 55 (2022) 234006 A S Hegde and C M Chandrashekar

Figure 6. l1-norm based coherence from equation (12) is determined for walks of
increasing acceleration. Evidently, these superdiffusive accelerated walks pose a pecu-
liar argument for coherence compared to homogeneous or disordered walks. Higher
the accelerating parameter a in the coin parameter, the faster the coherence measure
plummets to zero. The drop is expected to begin once the walk achieves fully ballistic
spreading. On the contrary, the coherence in homogeneous walk achieves saturation.

reaches the extreme points ±t in position space with almost zero probability at all other posi-
tion space making it a directed transport dynamics, deviating from the anomalous behavior.
This decrease in coherence indicates a corresponding decrease in the number of lattice sites on
which the walker is in superposition at a given time.

4.2. Relative entropy of coherence

The relative entropy of coherence CRE is an induced measure based on the quantum rela-
tive entropy S(ρ||σ) = Tr[ρ log(ρ)] − Tr[ρ log(σ)] for any two states ρ and σ. This relative
entropy measure has been previously used in various contexts such as quantifying superposition
[48, 49], estimating frameness [50, 51] and quantum thermodynamics [52, 53]. For a given
density matrix ρ =

∑
i, j ρi, j|i〉〈 j|, we denote ρdiag ≡ ρi,i|i〉〈i| for a matrix consisting of only its

diagonal elements. Reminding that von Neumann entropy is S(ρ) = −Tr[ρ ln(ρ)], we define
CRE as,

CRE(ρ) = S(ρdiag) − S(ρ). (13)

Based on the definition in equation (13) an inequality for obtaining the maximum coherence in
a state readily follows: CRE � S(ρdiag) � log d with the equality achieved only when the state is
maximally coherent. This measure of coherence is also shown to be super-additive and tightly
bounded above by the information function for a given quantum state [54].

As with the l1-norm based measure of coherence, we focus on the density matrix of external
degree of freedom of the walker ρp obtained after tracing out the coin Hilbert space. Figure 7
shows the evolution of relative entropy of the walker with incremental steps. In line with
the observations drawn from figure 5, the superdiffusion is correlated with higher coherence
values while the disordered walks show non-zero but almost flat coherence curves. Besides
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Figure 7. Relative entropy of coherence as defined in equation (13) is plotted for the
positional degree of freedom of different walkers as they evolve in discrete time steps.
The specifications used for walks is same as in figure 1. The trend in coherence dis-
played by different walks is strikingly similar to that of figure 5. The superdiffusive
walks are a result of highly coherent dynamics while the subdiffusive ones exhibit little
to no coherence.

Figure 8. Coherence entropy as defined in equation (13) is calculated across the accel-
erating parameter of increasing order of magnitude. The accelerated walks displaying
superdiffusive behavior present a special case of coherence compared to homogeneous
or disordered walks. Here as well, the coherence measure is inversely related to the num-
ber of steps at which it descends to zero. Even after 500 steps, the homogeneous walk
on the other hand steadily increases in coherence.

11



J. Phys. A: Math. Theor. 55 (2022) 234006 A S Hegde and C M Chandrashekar

pronouncing similar conclusions on interference effects influencing the spread of the walker,
the departure of coherence of accelerated walker from that of the homogeneous one proceeds
sooner than in figure 5. To probe further into this distinctive behavior of accelerated walks, we
evolve the walker for 500 steps in figure 8. Clearly, the coherence is reaching zero asymptot-
ically for any order of magnitude of the accelerating parameter a, whereas the homogeneous
walk grows steadily coherent.

5. Discussion and summary

The main emphasis in the present work has been laid on how interference effectively deter-
mines the spreading of a quantum particle modeled using quantum walks. We have demon-
strated the versatility of quantum walks resulting in the evolution ranging from superdiffusion
in homogeneous and accelerated dynamics to normal diffusion and subdiffusion in disordered
dynamics. Degree of interference in the dynamics has been quantified using coherence and has
been show as an effective way to characterize anomalous diffusion in quantum walks. From
both, l1-norm coherence and coherence entropy measure we can see that the non-zero value
indicate diffusion, the value ofα used to characterize the anomalous behavior can be mapped to
higher value of coherence when α > 1 and lower value when α < 1. AQW showing the transi-
tion from diffusive behavior to transport without interference resulting in decline of coherence
value to zero has further established effective use of coherence to characterize diffusion in
quantum walks. The same can be extended to show anomalous diffusion in periodic quantum
walks [55] and quasi-periodic quantum walks [56] and can be effectively used to characterize
anomalous diffusion in quantum dynamics. Though it is evident from the study presented here
that low value of coherence indicates subdiffusive behavior and high coherence value indicates
superdiffusive behavior, the transition from one to the other and characterization of transition
using coherence is an interesting question for further probing, particularly from the perspective
of open quantum dynamics since it accounts for the evolution of most of the realistic quantum
systems. Moreover, the insights furnished by quantum walks will be of immediate relevance
in engineering and modeling coherent processes with desired diffusive properties and will be
useful in further modeling and characterizing diffusion emerging from the dynamics in various
complex quantum systems.
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