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Dirac Cellular Automaton from 
Split-step Quantum Walk
Arindam Mallick & C. M. Chandrashekar

Simulations of one quantum system by an other has an implication in realization of quantum machine 
that can imitate any quantum system and solve problems that are not accessible to classical computers. 
One of the approach to engineer quantum simulations is to discretize the space-time degree of freedom 
in quantum dynamics and define the quantum cellular automata (QCA), a local unitary update rule 
on a lattice. Different models of QCA are constructed using set of conditions which are not unique 
and are not always in implementable configuration on any other system. Dirac Cellular Automata 
(DCA) is one such model constructed for Dirac Hamiltonian (DH) in free quantum field theory. Here, 
starting from a split-step discrete-time quantum walk (QW) which is uniquely defined for experimental 
implementation, we recover the DCA along with all the fine oscillations in position space and bridge 
the missing connection between DH-DCA-QW. We will present the contribution of the parameters 
resulting in the fine oscillations on the Zitterbewegung frequency and entanglement. The tuneability 
of the evolution parameters demonstrated in experimental implementation of QW will establish it as 
an efficient tool to design quantum simulator and approach quantum field theory from principles of 
quantum information theory.

In the relativistic quantum field theories the dynamics are defined using continuum description of space and time 
degrees of freedom. These continuum description have posed challenges for analytical calculations and remained 
an hurdle to put the theory on a computer. To overcome these challenges, techniques to discretize the dynamical 
degree of freedom was developed1,2. The Dirac equation (DE) describing the relativistic motion of a spin 1/2 parti-
cle is one prominent example where the continuous space and time degrees of freedom has been discretized using 
different techniques3–5. The process of discretization has not followed any unique approach, different techniques 
like the lattice gauge theory6,7 leading to same limit have emerged as discrete theory. An other discrete evolution 
model developed to study quantum systems is the quantum version of the cellular automaton8, quantum cellular 
automaton (QCA)5,9,10. In lattice gauge theory the evolution is described by the unitary operator is the exponen-
tial of an Hamiltonian involving the whole system at a same time and in QCA the evolution (update) rule of the 
system is described by a local unitary operators each involving few subsystems. The QCA can be regarded as a 
microscopic mechanism for an emergent quantum fields and as a framework to unify a hypothetical Planck scale 
with the usual Fermi scale of the high-energy physics11,12. The QCA which is not derivable by quantizing classical 
theory can also be used as a framework for quantum theory of gravity13,14. Different QCA models emerging to 
Dirac Hamiltonian (DH) for spinor with non-zero mass and massless particles is one prominent example that 
has been reported5,11,12 and are referred as Dirac Cellular Automata (DCA) or simply as Dirac Automata (DA).

Though QCA and discrete-time quantum walk (QW)10,15–18 are defined differently for evaluation of quan-
tum field and single particle, respectively at lattice site, the evolution operators for both are unitary, dynamics 
acts locally and are translationally invariant. The equivalence relation between the class of QW and QCA is also 
well established19 where QW is considered as a single-particle QCA. In a free quantum field theory where the 
interactions are not taken into consideration, a single particle QCA can mimic the free quantum field. However, 
when the QCA is developed to describe the dynamics of a specific free quantum field, the standard form of 
QW evolution operators will not always reproduce the operators corresponding to QCA in the exact form. For 
example, the DCA5,11 cannot be recovered in exact form from the conventional QW operators20. Even when the 
DE which we will use interchangeably with DH is recovered from the conventional composition of QW, all the 
intricate features observed in DCA are not reproduced. QW has already played an important role in development 
of efficient quantum algorithms21, to perform different quantum information processing protocols like quantum 
transport22,23, quantum memory24 and to model the dynamics of various quantum systems like energy transfer in 
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photosynthetic systems25,26. Each step of the QW which is discrete in space and time is a composition of a unitary 
quantum coin operation with variable parameters followed by a coin dependent position shift operator. These 
evolution protocol can be engineered to suit our applications and can be related to the physical operations in 
many quantum systems making an experimental implementation a reality27–30. Experimental advancements has 
also further complimented by recent progress in quantum simulations, where one system has been engineered to 
simulate another demonstrating the precise control over the quantum systems in laboratory. For example, sim-
ulation of discretized quantum fields using cold atoms in optical lattices31–35, coupled cavity arrays36–38, trapped 
ions39 and photonic systems40.

Our understating of conceptual structure of quantum theory and quantification of quantum behavior has 
improved by many folds with the advances in quantum information theory41. These developments has garnered 
interest in understanding quantum field theory and physics in general from the principle of quantum information 
processing, reviving the Feynman42 and Wheeler43 paradigm of physics as information processing. Quantum 
algorithms which achieves exponential speedup over fastest known classical algorithm to compute relativistic 
scattering probabilities in a continuum φ4 theory have been developed44. The continuum φ4 theory is a simplest 
interacting quantum field theory which applies to large number of particles at both weak and strong coupling 
regimes. In this work our focus is to establish a link between QW and discretized DE in the form of DCA in full 
generality. In the process of understanding the potential of QW to simulate DE, its dynamics in various approach 
to continuum limit was explored. The recovery of massless DH from limiting value in the evolution operator10,45,46 
and the non-zero mass DH by using the rotational invariance property47 and by transforming the coordinate sys-
tem to the null coordinates48 has been reported. DE in curved space has been recovered from QW in continuum 
limit by neglecting the higher order derivative terms49,50. Further, by rescaling the wavefunction with the coin 
parameter in the QW, an electromagnetically coupled massive DE has also been obtained51. But, none of these 
works draw any direct reference to DCA, a discretization of DE. To establish a one-to-one correspondence to DE 
and QW, we should be able to show that the discretization of DE (or DH) will also lead to operator form identical 
to the QW evolution operators along with showing the transition of QW to DE in continuum limit. In this direc-
tion, one of the recent result shows that the discretization of DE on the quantum lattice Boltzmann falls within 
the class of QW52. A generic comparative study of QW and DCA was reported highlighting the similarities and 
the difference in the form of fine oscillations of probability distribution between the two20. Here, we show that the 
split-step QW in place of standard form of QW will reproduce DCA with all the fine oscillations in the probability 
distribution and the effect of these oscillations on the dynamics, Zitterbewegung frequency and entanglement 
properties. These studies highlight the potential role of using QW in different forms for wide range of studies 
including, formulation of quantum field theory from the principles of quantum information theory like entangle-
ment properties and simulation of quantum field theory effects like Zitterbewegung oscillations.

In this report, we will first present the description of DCA and QW. Comparing the evolution operators from 
both the descriptions we will highlight the similarities and differences. In Results, starting from one dimen-
sional split-step QW53 which was defined to investigate topological phases and simulate edge states, we will show 
the complete recovery of the one-dimensional DCA. All the fine oscillations and the entanglement behaviour 
observed in DCA but not in conventional QW are recovered using split-step QW. We will discuss the conse-
quences leading to these observations and establish a very generic relation between QW-DCA-DH. We will 
also present the Zitterbewegung oscillations from the parameters that define split-step QW. This will establish 
QW, which can be designed according to our requirement as an efficient tool to design quantum simulator and 
approach both, free quantum field theory as well as dynamics in condensed matter systems from the principles of 
quantum information theory.

Dirac Cellular Automaton
Cellular automaton is a generalized tool for computation, where both space and time are discrete and state evo-
lution is local that is, the state at position x and time t depends only on the state of neighbouring positions of x 
including x itself, at previous time (t −  τ), where τ is the discrete time step. The state update rule acts synchro-
nously at every position called the lattice point where the unit cells of the lattice are all identical with the underly-
ing graph being regular54. The cellular automaton is called quantum, when the state evolution rules are quantum 
mechanical55. The QCA was first introduced in ref. 55 and with time, different models of QCA have been devel-
oped10,56. Each QCA model put forward by different set of authors have used different set of rules to define them 
uniquely9. Therefore, QCA is not uniquely defined like its classical counterpart. However, QCA model follows 
a general rule of using a set of unitary transition on a lattice of finite- dimensional quantum systems, on a finite 
neighbourhood scheme and a finite internal degrees of freedom.

Starting from QCA as a framework, constructing the existing quantum field theories and gravitational theo-
ries produced from the Planck scale to usual Fermi scale has been explored to understand the theory from quan-
tum information perspective. In one of the approach reported recently11, DH has been derived from the QCA 
by constructing the evolution operator for a system which is (1) unitary, (2) invariant under space translation,  
(3) covariant under parity transformation, (4) covariant under time reversal and (5) has a minimum of two inter-
nal degrees of freedom (spinor). This QCA evolution which recovers DE is named as DCA and is in the form,

α β
β α

=





−
−






−

+
U

T i
i T (1)
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which can be re-written in the form20,
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where α corresponds to the hopping strength, β corresponds to the mass term,

σ↑ = ↓ = =( ) ( ) ( )1
0 ; 0

1 ; 0 1
1 0 , (3)x

and T± represents a position shift operator of the form,


∑= ±±
∈

T x a x
(4)x a

with x being the integer multiples of lattice spacing, a. The lattice can be considered to be either periodic or 
infinite, such that,


∑= = = = = .− + − + + −
∈

†T T T T T T I x x, Identity in space
(5)x a

For an infinite lattice, x ∈  {− ∞ , ..., − 2a, − a, 0, a, 2a, ..., + ∞ }. From the unitarity condition of the operator 
UDA we have, |α|2 +  |β|2 =  1, Im(α*β) =  0 ⇒  arg(α) =  integer ×  π +  arg(β). So, if we don’t worry about the overall 
phase factor ei[arg(β)], that appears in the UDA operator, we can treat α and β as real numbers. For a very larger 
wavelength compared to Planck length ≈ 1.6162 ×  10−35 m and for a mass very much lesser than the Planck mass 
≈ 2.1765 ×  10−8 kg, the associated Hamiltonian with this unitary operator in momentum basis, produces Dirac 
Hamiltonian.

τ
=





− 




H k a
c

kc mc
mc kc

( )
(6)

2

2

with the identification β = mac


, k is a eigenvalue of momentum operator,  is 
π
1

2
 ×  Planck’s constant, m is the mass 

of the associated Dirac particle, c is the velocity of light in free-medium.

Discrete-time Quantum Walk
Quantum walks are broadly classified into two types, discrete and continuous time quantum walks. Here we will 
focus only on the one dimensional discrete version (QW) where the particle which evolves in position space {|x〉}  
has two internal degrees of freedom |↑ 〉  and |↓ 〉 . The state at time t as a linear composition of the internal degrees 
of freedom can be represented by,

Ψ = Ψ ⊗ ↑ + Ψ ⊗ ↓ =






Ψ

Ψ






.↑ ↓

↑

↓
t t t

t

t
( ) ( ) ( )

( )

( ) (7)

The 〈 x | Ψ ↑(↓)(t)〉  =  Ψ ↑(↓) (x, t) will return the probability amplitude of internal state |↑ 〉  (|↓ 〉 ) at position x. Each 
step of the QW is defined by a unitary quantum coin operation C on the internal degrees of freedom followed by 
a position shift operation S. That is, the state at time (t +  τ) will be,

τΨ + = ⊗ Ψ = Ψt S I C t U t( ) ( ) ( ) ( ) (8)QW

The general form of C is,
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where, ξ is global phase angle, 2θ, 2φ, 2δ are the angles of rotations along x, y, and z axes respectively, and σi is the  
i th component of the Pauli spin matrices {σx, σy, σz}, which are generators of SU(2) group. So, in our internal 
space the rotational periodicity occurs for rotation angle ζ =  4π instead of 2π which happens in our spatial rota-
tional case. Here ζ ∈  {2θ, 2φ, 2δ}. So, throughout this article we will consider θ, φ, δ ∈  [0, 2π]. The position shift 
operator S on lattice with spacing a is of the form,
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The general form of the evolution operator UQW will therefore be,
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The state of the system at position x after one step of walk, at time (t +  τ) will take the form,

τΨ + = Ψ =






Ψ + + Ψ +

− Ψ − + Ψ −






.
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To elucidate the similarities and difference between the evolution operator for QW and DCA given in equa-
tion (2), we have to simplify the equation (11). By neglecting the global phase term eiξ and substituting φ =  δ =  0, 
evolution operator for QW takes the form,

= ⊗ ↑ ↑ + ⊗ ↓ ↓ + ⊗ ↑ ↓ + ⊗ ↓ ↑θ θ− + − +U F T T G T T{ } { } (13)QW

where

θ θ= = = = − .θ θ θ θF F G G icos( ), sin( ),0,0 ,0,0

Comparing UQW (equation (13)) with the UDA (equation (2)) we can see that the diagonal elements are iden-
tical whereas, the off-diagonal elements in UQW differ with a presence of a shift operator in place of the spatial 
identity operator in UDA. This difference will remain irrespective of the choice of parameters θ, φ, and δ. The pres-
ence of shift operator in both, diagonal and off-diagonal elements of UQW will always result in a zero probability 
amplitude at odd (even) positions after even (odd) number of steps of walk when the initial position x =  0. In case 
of UDA the evolution will always return a non-zero probability amplitude at all positions irrespective of even or 
odd number of steps.

By taking the value of θ in QW coin operation to tend towards zero, the off-diagonal terms can be ignored and 
a massless DH can be recovered. These were the first results to establish the connection between the QW and 
expression for massless DE10,45,46. In order to recover the DE for a non-zero mass particle from the QW evolution 
operator, the evolution was taken into continuum limit and the coordinate was changed to null coordinate48. DH 
for a non-zero mass particle was also recovered by taking each step evolution operators to continuous form and 
by introducing a rotation θσ−e i /2y  47. These continuous approximations suppressed the zero probability in alternate 
position space which is predominately seen in discrete version. The connection only at limiting value of the coin 
operator and the need to invoke null coordinates or the rotational invariance to recover DH could not completely 
resolve the connection between the the QW-DCA-DH. Resolving the difference between the DCA and QW will 
make QW a suitable method to simulate DH accounting to all intriguing features in the dynamics. This can be 
done by describing a QW which will evolve with non-zero probability amplitude at all position within the range 
x =  ± na, (n =  number of steps). We will discuss this in Results.

Results
DCA from Split-Step QW. Here we will present the form of QW, split-step QW which will recover DCA 
with all the fine oscillations and non-zero probability at all positions between the range of x =  ± na. Split-step QW 
which was first introduced to simulate various topological phases53, and this will establish the split-step QW as a 
generalization of conventional QW.

In split-step QW each step of the walk is split into two half-steps, which is composed of two quantum coin 
operations which in general form will be,
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and a two half-shift operators,
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The operator S− (S+) shifts state |↑ 〉  (|↓ 〉 ) to the left (right) in position space while leaving the state |↓ 〉  (|↑ 〉 ) to 
remain in same position. One complete step of the split-step QW is defined as,

θ φ δ θ φ δ= ⊗ ⊗+ −U S I C S I C( ( , , )) ( ( , , )), (18)SQW 2 2 2 1 1 1

where
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θ φ δ⊗ =
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In the preceding expression for USQW we get both, position shift operator and spatial identity operators in the 
diagonal as well as off-diagonal elements. To obtain USQW in the same form as UDA (equation (2)), we have to iden-
tify the parameters of the quantum coin operators that will remove the spatial identify component along the diag-
onal and spatial-shift component along the off-diagonal elements. Therefore, the coin parameters should satisfy,

θ φ θ φ

θ φ θ φ

= +

× − =
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Among the possible solutions we will choose the parameter θ1 =  φ1 =  δ1 =  δ2 =  0 which will recover the DCA 
and satisfy the above conditions. By substituting them in USQW we get,
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=





−
−






−

+
U

T i I
i I T

cos( ) sin( )
sin( ) cos( )

,
(25)

SQW
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which is in the same form as UDA where β θ= ≡sin( ) mca
2 

 and α =  cos(θ2). From this unitary operator we will 
recover the Hamiltonian in the form,
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See Methods for the derivation. For smaller mass, θ2 ≈  0 and for smaller momentum, k ≈  0, 
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which is in a form of one-dimensional DH for a 1
2

 spinor, with the identifications, =
τ

ca  and  =θ
τ

mc22 , so, 
= θ τm

a
2
2

 .
In this section, starting from split-step QW we obtained the expression for DCA and from that we recovered 

DH without invoking any invariance property explicitly.
In Fig. 1(a) we present the probability distribution of QW and split-step QW (same for DCA) after 100 steps 

of walk using the coin operation of the form θ
θ θ

θ θ
=





−

−






C

i
i

( )
cos( ) sin( )

sin( ) cos( )j
j j

j j
. Though both the distribution 

spread along the same envelop, and fine oscillations which is seen in the split-step QW is absent in conventional 
QW. In the inset we show the probability distribution for conventional QW without removing the points with 
zero probability at alternate position space. In Fig. 1(b) we have presented the probability distribution of the 
split-step QW after 100 steps of evolution using different combinations of θ1 and θ2. In spite of having the similar 
probability distributions these combinations do not straight away recover the DCA like it does for the (θ1 =  0, 
θ2 =  π/4). All the plots in this report were obtained by time iteration evolution of the walk operators.
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Zitterbewegung Oscillation. Any quantum mechanical observable Â which doesn’t commute with the 
Hamiltonian operator, that is, ≠Â H[ , ] 0, results in mixing of positive and negative energy eigenvalue solutions 
during the evolution. This mixing is responsible for oscillation of the expectation value of the observable and is 
known as Zitterbewegung oscillation57. Zitterbewegung oscillation is a very common phenomenon that describes 
the jittering motion of free relativistic Dirac particles, as predicted by evolution driven by DH. Therefore, we will 
look into this interesting phenomenon as a function of split-step QW evolution parameter and compare it with 
the configuration of the parameter for which we see the equivalence with DCA.

We will first consider the split-step QW with the non-zero parameters θ1 and θ2, with φ’s and δ’s set to zero. 
From this we can deduce to the parameter configuration which results in equivalence with DCA. The evolution 
parameter as a function of θ1 and θ2 is,

θ θ θ θ
θ θ θ θ

θ θ θ θ
θ θ θ θ

=







− −
+ −

− −
− +







.
− −

+ +

U

I i I
T i T

i I I
i T T

sin( )sin( ) cos( )sin( )
cos( )cos( ) sin( )cos( )

cos( )sin( ) sin( )sin( )
sin( )cos( ) cos( )cos( ) (28)

SQW

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

The internal states of the system remain same by the action of the diagonal terms of operator of equation (28), 
but the off-diagonal terms flip among |↑ 〉  and |↓ 〉 . The overall effect of the diagonal terms are simple forward 
(positive x direction) or backward (negative x direction) movement for individual internal degrees of freedom. 
But the off-diagonal terms which cause both, flipping in internal degrees and spatial shift, these cause oscillatory 
movement in x–position axis.

For split-step QW the Zitterbewegung frequency is,

τπ
θ θ θ θ=












 −







−Z ka1 cos cos( )cos( )cos sin( )sin( )
(29)SQW

1
1 2 1 2

and corresponding amplitude of oscillation,

φ φ φ φ= = = + = = .+ − + −ˆ ˆ⁎ ⁎R Ic c t A t c c t A t2 [ ( ( 0) ( 0) )] [ ( ( 0) ( 0) )] (30)SQW k k k k1 2
2

1 2
2



See Methods for the intermediate steps and the extended forms of the terms in equation (30).
For case with one-to-one correspondence with DCA, ZSQW reduces to,

θ
τπ

θ= ≡ =

















.−Z Z ka( 0) 1 cos cos( )cos

(31)SQW DCA1
1

2 

In Fig. 2(a,b), the Zitterbewegung frequency as a function of θ1 and θ2 for two different values of ka/ is shown. 
The maximum and minimum oscillation frequency is for non-zero θ1. For configuration leading to DCA, θ1 =  0, 
the oscillations frequency as function of k ranging from − 2  to 2 58, and θ2 is shown in Fig. 2(c). With the  
combination of coin parameters and k one can demonstrate complete control on the frequency of the 
Zitterbewegung frequency.

Figure 1. The probability distribution of finding the particle in one-dimensional position space after 100 
steps of conventional and split-step (SS) QW. The initial state of the particle and the coin operation used for 
the evolution are Ψ = ↑ + ↓ ⊗ =x(0) ( ) 01

2
 and C(θj). (a) Blue distribution is for SS-QW (θ1 =  0, 

θ2 =  π/4) which is identical to DCA when α β= = 1
2

 and the red line is for the conventional QW (θ =  π/4). 
Points with zero probability is removed from the main plot whereas, it is retained in the inset. (b) SS-QW for 
evolution using different combinations of θ1 and θ2. From these distribution we can say that the oscillations in 
the probability distribution is not unique to the combination of θj which results in recovery of DCA.
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Entanglement between position space and internal degree. QW gives easy access to study the 
entanglement behavior of the evolving particle with the position space. In ref. 20 it was shown that the entangle-
ment between the particle and the position space for DCA is higher compared to the conventional QW. Since we 
have show that the split-step QW with θ1 =  0 and θ2 =  π/4 is equivalent to DCA with α β= = 1

2
, comparing the 

entanglement between the split-step QW with conventional QW will suffice to compliment and present the more 
general observations. We will define the initial state in density matrix form on the total Hilbert space 
  = ⊗coin x,

ρ =







Ω Ω Ω

Ω Ω Ω







⊗ = = .

− Ω

Ω

e

e
x x(0)

cos
2

sin
2

cos
2

sin
2

cos
2

sin
2

0 0

(32)

p p p i

p p i p

2

2

a

a

is a pure state. Here, ∈x ,x  Ωp ∈  [0, π] and Ωa ∈  [0, 2π) are respectively, the polar and azimuthal angle of Bloch 
sphere associated with the coin space. The state after time t will be,

ρ ρ= τ τ†t U U( ) (0)( ) , (33)SQW
t

SQW
t

where USQW is given by equation (28).
As here we are dealing with only the evolution of a pure quantum state which remains pure by unitary evolu-

tion, we will use the partial entropy as a measure of entanglement, which is enough to give correct measure of 
entanglement of a pure state. For that we first take partial trace with respect to x-space (position space) of time 
evolved state =  Trx(ρ(t)): =  ρc(t). Then according our measure the entanglement at time t is given by,

ρ ρ−Tr t t[ ( )log { ( )}], (34)c c c2

the suffix c represents the coin space. In Fig. 3, we present the value of entanglement as a function of time for 
conventional QW and split-step QW which recover DCA for evolution with three different initial states. For the 
three initial state presented, the mean value of the entanglement remains same for conventional QW with only 

Figure 2. Zitterbewegung frequency as a function of θ1, θ2 and k. Oscillation frequency as function of θ1 and 
θ2 when (a) ka/ =  1 and (b) ka/ =  1034. (c) Oscillation frequency as function of k (in range −{ 2 , + 2 }) and 
θ2 when θ1 =  0 and a/ =  1 (SS-QW equivalent to DCA).

Figure 3. Entanglement as a function of time with different initial state. For conventional QW coin 
parameter θ = π

4
 and for SS-QW θ θ= = π0,1 2 4

. The initial states in (a) ↑ + ↓ ⊗ =i x( ) 01
2

  
(b) ↑ + ↓ ⊗ =x( ) 01

2
 and (c) |↑ 〉  ⊗  |x =  0〉 . Dependency of entanglement value on the initial state is 

higher for split-step QW compared to the conventional QW.
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a change in the fluctuations around the mean value. For the split-step QW, the entanglement itself varies signif-
icantly reaching maximum value (one) with the change in the initial state. This variation in entanglement value 
is an indication of greater change in the degree of interference in split-step QW compared to convention QW. In 
Fig. 4(a,b), we show the profile of the entanglement as a function of azimuthal Ωa and polar Ωp angle of the initial 
state for split-step QW and conventional QW. From the plots we can observe that the range of the maximum and 
the minimum values is higher for split-step QW compared to the conventional QW.

In Fig. 4(c–e) we show the value of entanglement as a function of parameter θ1 and θ2 for split-step QW with 
three different initial state, ↑ + ↓ ⊗ =i x( ) 01

2
, |↑ 〉  ⊗  |x =  0〉  and ↑ + ↓ ⊗ =x( ) 01

2
.

With two initial state parameters (Ωp and Ωa) and the two coin operation parameters (θ1 and θ2), split-step 
QW will give more degrees of freedom to configure the dynamics resulting in maximum entanglement. For a con-
strained initial state, we can choose the evolution parameters to maximize the entanglement and for a constrained 
evolution parameters like the one leading to DCA, we can choose the initial state to maximize the entanglement.

Concluding Remarks
In summery, we have shown the recovery of the DCA and DH starting from the split-step QW. Earlier studies 
showed the gap in the connection between DCA and conventional QW due to the presence of the component in 
DCA which forced the probability amplitude to stay in the original position. Split-step QW which was developed 
to demonstrate greater control over the walk and explore topological phases by construction itself ensured the 
presence of probability amplitude at the original position during each step evolution. Exploiting this common 
feature in split-step QW and DCA, we analytically arrived at the combination of the two coin parameters θ1 and 
θ2 used in defining the split-step QW to recover the DCA and DH with all the fine oscillations in the probability 
distribution. In this work we have shown that the construction of split-step QW itself meet all the conditions 
required to arrive at DCA and DH without explicitly invoking any invariance condition. A similar equivalence 
relation between classical random walk and classical cellular automata is not known. Its the unitarity condition in 
quantum case that lead to this equivalence.

In our study, we also derived the expression for the Zitterbewegung oscillation from the parameters that 
define the split-step QW. This allows for identifying the parameters resulting in higher oscillations and its 

Figure 4. Entanglement between space and internal degree of freedom as a function of initial state and 
coin parameters after 90 steps of walk. The entanglement as a function of initial state parameter for (a) split-
step QW with θ1 =  0, θ = π

2 4
 and for (b) conventional QW with θ = π

4  is shown. For (a,b) the azimuthal Ωa and 
polar Ωp angle correspond to the spherical coordinate angles of Bloch sphere associated with the internal degree 
(coin space). Entanglement as a function of θ1 and θ2 for initial state of the system (c) ↑ + ↓ ⊗ =i x( ) 01

2
  

(d) |↑〉  ⊗  |x =  0〉  and (e) ↑ + ↓ ⊗ =x( ) 01
2

 is shown. The values of entanglement generated in split-step 
QW shows a significant dependency on the initial state.
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correspondence with real physical situation in the elementary particle dynamics where Zitterbewegung 
oscillations is observed. Variation of entanglement as a function of initial state and evolution parameters 
give greater degree of freedom to optimize the split-step QW for maximum entanglement compared to 
conventional QW. This simple connection between QW-DCA-DH could lead to an interesting regime of 
simulating free quantum field theory from the perspective of quantum information theory. With quantum 
walk being used to simulate dynamics in various physical systems, it can soon play a very prominent role in 
designing a universal quantum simulator to simulate dynamics observed in both, condensed matter systems 
and quantum field theory.

Methods
Recovery of Dirac Hamiltonian from Split-step QW. In the equation (22) if we put φ1 =  φ2 =  δ1 =  δ2 =  0 
with a non-zero θ1 and θ2 values, we have the expression for the evolution operator,

 

 

θ θ θ θ
θ θ θ θ

θ θ θ θ
θ θ θ θ

θ θ θ θ

θ θ θ θ

θ θ θ θ

θ θ θ θ

=







− −
+ −

− −
− +







=







− −

+ −

− −

− +







− −

+ + − −

U

I i I
T i T

i I I
i T T

I i I

e i e

i I I

i e e

sin sin cos sin
cos cos sin cos

cos sin sin sin
sin cos cos cos

sin sin cos sin

cos cos sin cos

cos sin sin sin

sin cos cos cos (35)

SQW

ipa ipa

ipa ipa

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

This is an operator for both, on position space and internal degrees of freedom.
Here we have used the operator form

 =±


e T ,
ipa

with p being the momentum operator, such that p|k〉  =  k|k〉 , where |k〉  is a momentum eigenbasis with momen-
tum eigenvalue k. The above operator USQW is diagonal in this momentum basis. So, from now onwards we will 
work with,

 

 

θ θ θ θ

θ θ θ θ

θ θ θ θ

θ θ θ θ

= =







− −

+ −

− −

− +





− −

k U k U k

i

e i e

i

i e e

( )

sin( )sin( ) cos( )sin( )

cos( )cos( ) sin( )cos( )

cos( )sin( ) sin( )sin( )

sin( )cos( ) cos( )cos( ) (36)

SQW SQW

ika ika

ika ika

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

is an operator on internal degrees of freedom only. This operator is unitary, so this is a normal operator, hence 
diagonalizable. Eigenvalues of operator USQW(k) are,

θ θ θ θ

θ θ θ θ

θ θ θ θ

Λ =











 −







± −











 −







=




±












 −












±

−

ka

i ka

i ka

cos( )cos( )cos sin( )sin( )

1 cos( )cos( )cos sin( )sin( )

exp cos cos( )cos( )cos sin( )sin( )
(37)

1 2 1 2

1 2 1 2

2

1
1 2 1 2







with the definition, 


=


 +





−( ) e ecos
ikaka ika1

2
.

The unnormalized eigenvectors of USQW(k) are,

θ θ θ θ θ θ

θ θ θ θ



 +



 ↑ +













−











 −












↓

e ka

ka

cos( )sin( ) sin( )cos( ) cos( )cos( )sin

1 cos( )cos( )cos sin( )sin( )
(38)

ika
1 2 1 2 1 2

1 2 1 2

2







Their normalized eigenvectors of USQW will be,
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2

Now, if unit time step evolution operator, = −
τ( )U : expSQW

iH SQW


, we will call HSQW, our effective 

Hamiltonian, which is also diagonal in momentum basis. So, in a similar manner, = −
τ( )U k( ): expSQW

iH k( )SQW


, 

then operator φ φ φ φ= = Λ + Λ .
τ τ +

+ +
−

− −H k U k( ) ln[ ( )] [(ln ) ( ln ) ]SQW
i

SQW
i

k k k k
 

Instead of this, in general we could take,

 


τ τ

φ φ φ φ

τ
π φ φ π φ φ

= = Λ | 〉〈 | + Λ | 〉〈 |
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SQW e SQW e k k e k k

k k k k

where r+, r− are integers. Therefore, in general there would be an ambiguity of eigenvalue of HSQW(k) by an addi-
tional factor, ×π

τ
2   (an integer). But in our formalism, unitary evolution is fundamental and Hamiltonian is 

derived from this operator. We only need to see the effect of the Hamiltonian, in our evolution. So, we will con-
sider  Λ

τ ±lni  mod π
τ

2   as our energy eigenvalues, without further mentioning this ‘mod’ operation.

τ τ
θ θ θ θ ωΛ =











 −





= .±
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i kaln cos cos cos cos sin sin
(42)k

1
1 2 1 2

 




The eigenvectors of USQW(k) are also eigenvectors of HSQW(k). We can form a unitary operator V, from the 
eigenvectors which diagonalizes USQW(k), that is,

=




Λ
Λ






.+

−

−U k V V( ) 0
0 (43)

SQW
1

Therefore,

τ τ
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−

−
+

−( )H k i V V H k i V V( ) ln 0
0 ln

( ) ln( ) 1 0
0 1 (44)

SQW SQW
1 1 

In order to find out the mass term, we put k =  0 in the above eigenvalue equation (42), we get the magnitude of 
mass of the particle is equal to |θ1 +  θ2|, more correctly |θ1 +  θ2| +  2πn, where n is an integer.

From the equations (42) and (44), we get the operator form of Hamiltonian operator in |k〉  basis,
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This is the Hamiltonian operator for general split-step QW in momentum basis.
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In the above equation (35) if we put, sin(θ1) =  0, then our state evolution operator will be,


∑θ θ σ

θ

= = − | 〉〈 | ⊗

+ | − 〉〈 | ⊗ |↑〉〈↑| + | + 〉〈 | ⊗ |↓〉〈↓|
≡ .

∈
U i x x

x a x x a x
U

( 0) sin( )[ ]

cos( )[ ]
(46)

SQW
x a

x

DA

1 2

2

Then, α =  cos(θ2) and β =  sin(θ2) with the constraint sin(θ2) ∈  [0, 1].
Also the Hamiltonian (equation (45)) boils down to the Hamiltonian for Dirac cellular automata, in momen-

tum basis, for sinθ1 =  0,

θ
θ

τ θ

θ θ

= = −
−

×




 −

−
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H k k
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k H
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1 (cos( )cos )
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0 1 sin 0 1

1 0 (47)
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1

1
2

2
2

2 2



We previously identified, in the general split-step QW case, mass =  |θ1 +  θ2|, so in this case mass is equals θ2, 
as θ1 =  0.

And for smaller mass θ2 ≈  0, momentum k ≈  0, 
  

θ θ θ≈ ≈ ≈ ≈ .( ) ( )sin , cos 1, sin , cos 1ka ka ka
2 2 2  Then

τ τ
θ≈ −

−
+( ) ( )H a k 1 0

0 1
0 1
1 0 (48)DA 2



which is in a form of one-dimensional Dirac Hamiltonian for a 1
2

 spinor.

Derivation of Zitterbuguang frequency. For the case of general split-step QW, the state |χ〉  of a particle 
moving with momentum k, can be expressed as a linear superposition of the energy eigenstates φ ±k  (normalized) 
with the same momentum k, so
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Here |c1|2 +  |c2|2 =  1 where c1 and c2 are complex numbers. In the equation (49), t is a integer multiple of τ, if 
we do not consider this, then we have to take, integral part of 

τ( )t  instead of .
τ
t  we can see that the time dependent 

part is,
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which is identified as the Zitterbewegung frequency,
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and corresponding amplitude of oscillation = 
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where,
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±Nk  is given by equation (40).
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