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In quantum illumination, the signal mode of light, entangled with an idler mode, is dispatched towards a
suspected object bathed in thermal noise, and the returning mode, along with the stored idler mode, is measured
to determine the presence or absence of the object. In this process, entanglement is destroyed but its benefits
in the form of classical correlations and enlarged Hilbert space survive. Here, we propose the use of a probe
state hyperentangled in two degrees of freedom, polarization and frequency, to achieve a significant 12-dB
performance improvement in the error probability exponent over the best-known quantum illumination procedure
in the low-noise regime. We present a simple receiver model using four optical parametric amplifiers (OPAs)
that exploits hyperentanglement in the probe state to match the performance of the feed-forward sum-frequency
generator (FF-SFG) receiver in the high-noise regime. By replacing each OPA in the proposed model with a
FF-SFG receiver, a further 3-dB improvement in the performance of a lone FF-SFG receiver can be seen.
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I. INTRODUCTION

Detecting the presence or absence of an object in real space
using low-intensity probe states is often a challenging task due
to the surrounding thermal noise. In such an object-detection
scenario, protocols using quantum states as probes have been
developed, where a probe state is transmitted towards the sus-
pected object and the returning state is measured. The efficacy
of different transmitter-receiver models is quantified using the
probability of error in detecting the presence or absence of
the suspected object [1,2]. For a given transmitter, the mini-
mum error probability for deducing the object to be present
is achieved when the measurement projects onto the positive
eigenspace of ρ1 − ρ0, where ρ0 is the density operator of the
returning state in the absence of any object while ρ1 is the
density operator in its presence [3]. The calculation of this
minimum error probability is, in general, prohibitively diffi-
cult. The relatively tractable quantum Chernoff bound (QCB)
provides an asymptotically tight bound on the error proba-
bility (pe) [4]. It is defined as QQCB ≡ min0�s�1 Tr[ρs

1ρ
1−s
0 ].

After N detection events, the bound on the error probability is
given by

p(N )
e � 1

2 (QQCB)N . (1)

Several candidate probe states, viz., coherent states, single
photons [5], entangled biphotons, and the two-mode squeezed
vacuum (TMSV) state, have been considered for object de-
tection [6]. Quantum illumination (QI), in general, refers to
the use of entangled states, where photons in one of the
entangled states, treated as signal photons, are sent towards
the suspected object, and the so-called idler photons in the
other entangled state are kept back. Joint measurement of
the returning photons and idler photons has been shown to

be more effective than the use of classical states of light in
detecting the presence or absence of the object in certain
parameter regimes. With the mean number of thermal photons
denoted by NB and the reflectance of the object by κ , the
quantum Chernoff bound for QI using an entangled probe
state such as TMSV, having NS mean number of photons in
each entangled mode, was computed [6] and a 6-dB (factor-
of-4) improvement in the exponent of the error bound over
the best classical object detection strategy was shown in the
high-noise and low-signal-intensity regime (NS � 1, κ � 1,
and NB � 1) [6,7]. After N iterations, this bound is given
by [6]

p(N )
e,QI � e−κNNS/NB/2. (2)

The low-noise regime, on the other hand, is characterized by
the mean thermal photon number per temporal mode (NB)
being significantly less than unity (NB � 1). In a typical QI
protocol in this regime, a transmitter dispatches N iterations
of signal photons spanning over M temporal modes (M � 1)
towards a possible target of very poor reflectance κ . In the
so-called “bad regime” [5] characterized by MNB � 1 and
κ � NB/M within the low-noise regime, the bound on the
error probability is given by [8]

p(N )
e,QI � e−NMκ2/8NB/2, (3)

which is lower by a factor of M in the exponent than a
detection protocol employing only a single-photon probe
(SP) [8],

p(N )
e,SP � e−Nκ2/8NB/2. (4)

However, it should be noted that the use of a coherent
state as the probe (CS), which has an associated error
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probability bound of e−κNS /2, outperforms QI in this regime
[8]. At the heart of it, the improved performance of QI stems
from the larger Hilbert space of the entangled signal-idler
system [9]. Therefore, the use of an enlarged Hilbert space
through “hyperentanglement,” i.e., entanglement in more than
one degree of freedom of the probe, without increasing the
number of photons [10] along with an appropriately designed
receiver can further increase the efficiency of QI. With various
experiments demonstrating the generation of hyperentangled
states of photons [11], its use for QI can be substantiated.
While the enhancement effected by hyperentanglement in a
continuous parameter estimation problem has been analyzed
in an earlier work [12], this article shines light on the en-
hancement in what is essentially a hypothesis testing task. In
this article, we propose object detection using a probe state
hyperentangled in polarization as well as frequency degrees
of freedom [13]. We show that the QCB for object detection
using hyperentangled photons gives a remarkable 12-dB im-
provement in the exponent of the error probability over QI
in the “bad regime.” For the receiver, we propose a setup
that includes four optical parametric amplifiers (OPAs) that
exploits the presence of correlations between the four pairs
of modes for every iteration due to the hyperentanglement.
This results in a 3-dB improvement in the high-noise regime
over the earlier proposals for practical quantum illumination
receivers using the optical parametric amplifier (OPA) and
a phase conjugate receiver (PCR) [14,15]. This performance
matches the only other proposal that theoretically achieves the
same using sum-frequency generation receiver with a feed-
forward (FF-SFG) receiver [16], whose implementation is,
to our knowledge, more challenging. Finally, by replacing
each OPA with a FF-SFG receiver, we also show that this
hyperentanglement-enhanced FF-SFG receiver outperforms
the lone FF-SFG receiver by 3 dB in the error probability
exponent. The next section details the 12-dB performance
improvement offered by hyperentanglement in the low-noise
regime and the two sections following the next analyze the
performance of the proposed hyperentanglement-enhanced
OPA receiver and the hyperentanglement-enhanced FF-SFG
receiver in the high-noise regime.

II. HYPERENTANGLEMENT-ENHANCED SENSITIVITY
IN THE LOW-NOISE REGIME

Ever since the first experimental demonstration of the
generation of hyperentangled photon pairs [17], different pro-
cedures to generate hyperentanglement in different degrees
of freedom of photons have been successfully demonstrated.
Here, we will briefly outline one such procedure [13] to
generate states hyperentangled in polarization and frequency
degrees of freedom. Using two identical type-II noncollinear
spontaneous parametric down-conversion (SPDC) genera-
tors driven by identical pumps, derived from a common
pump, |�〉1 and |�〉2, that are entangled in a polariza-
tion degree of freedom [18] are produced. For each of
these states, the mean number of photons in each entan-
gled mode of the state is N ′

S . The states have the Fock state

representation [19],

|�〉1 =
∞∑

n=0

N ′
S

n/2

√
2(N ′

S + 1)(n+1)/2
(|n〉1,H,S |n〉1,V,I

+ |n〉1,H,I |n〉1,V,S ), (5)

|�〉2 =
∞∑

n=0

N ′
S

n/2

√
2(N ′

S + 1)(n+1)/2
(|n〉2,H,S |n〉2,V,I

+ |n〉2,H,I |n〉2,V,S ). (6)

Here, S and I refer to the signal and idler frequency, 1 and 2
denote distinct spatial modes, while H and V denote horizon-
tal and vertical polarization, respectively. The output spatial
modes of a single noncollinear SPDC process are distinct
but using appropriate lenses, the spatial overlap of the output
modes can be increased such that the two spatial modes may
be approximated to be identical. Thus, the signal and the
idler frequency modes occupy the same spatial mode. If the
original common pump had been used to drive a single SPDC
generator, the mean number of photons in each of the two
output modes would have been NS (say) and would be related
to N ′

S as N ′
S = NS/2. The two spatial modes form the input to

a balanced beam splitter to give

a3 = a1 + ia2√
2

, (7)

a4 = ia1 + a2√
2

. (8)

The resulting state is entangled in frequency ωS and ωI besides
polarization. A first-order approximation in the squeezing pa-
rameter of the resulting hyperentangled state and setting the
relative pump phase to zero or π yields a hyperentangled
biphoton state [13]. For the low-noise regime, the time-
bandwidth product is adjusted such that the transmitter pulse
spans over M temporal modes to give the following output
state [13],

|�〉3,4 = 1

2
√

M

M∑
k=1

[|1k〉3 |1k〉4 ⊗ {|H〉3 |V 〉4 + |H〉4 |V 〉3}

⊗ {|ωS〉3 |ωI〉4 + |ωS〉3 |ωI〉4}].
(9)

The subscripts 3 and 4 indicate the two distinct spatial modes
while |1k〉 j represents the presence of a single photon in the
kth temporal mode and the spatial mode j and none in the
other temporal modes. One of the entangled photons is sent
towards the possible target while the other is stored. Let the
spatial mode associated with the dispatched photon be 3 and
the spatial mode occupied by the stored photon be 4. The local
state of the stored photon is of the form

σ = Tr3(|�〉 〈�|3,4) = I4

4M
, (10)

where I4 is the 4M-dimensional identity operator over the
space spanned by the single-photon states occupying M dis-
tinct temporal modes, with each mode being further indexed
by two distinct frequencies and polarizations. In the absence
of any object, the returning state is the unpolarized thermal
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state with a mean number of thermal photons per tempo-
ral mode (NB) satisfying the condition MNB � 1. The mean
number of thermal photons depends on the frequency but
assuming the values of ωS and ωI are sufficiently close, we
approximate the mean thermal photon number to be the same
for both the frequencies. The thermal state ρt under the low-
noise condition is approximated as [5]

ρt = (1 − MNB) |0〉 〈0|3 + NB

4

M∑
k=1

[|1k〉 〈1k|3 ⊗ {|H〉 〈H |3

+ |V 〉 〈V |3} ⊗ {|ωS〉 〈ωS|3 + |ωI〉 〈ωI |3}] (11)

= (1 − MNB) |0〉 〈0|3 + NB

4
I3. (12)

Here, I3, as I4, is an identity operator over the single-photon
subspace. In a slight abuse of notation, we have indexed the
returning state as well as the dispatched single-photon state
by 3. In the absence of any object, the global state ρ0 (i.e.,
returning state+stored state) is

ρ0 = ρt ⊗ σ. (13)

In the presence of a weakly reflecting object with reflectance
κ , we have

ρ1 = (1 − κ )ρ0 + κ |�〉 〈�|3,4 . (14)

The minimum error probability for distinguishing between ρ0

and ρ1 is bounded by the quantum Chernoff bound [20]. In
order to determine QCB, we need to evaluate ρ1−s

0 and ρs
1,

ρ1−s
0 =

[
(1 − MNB)1−s |0〉 〈0|3 +

(NB

4

)1−s

I3

]
⊗ I4

(4M )1−s ,

(15)

ρs
1 = (1 − κ )s(1 − MNB)s |0〉 〈0|3 ⊗ I4

(4M )s

+ (1 − κ )s
( NB

16M

)s

(I3 ⊗ I4 − |�〉 〈�|3,4)

+
[
(1 − κ )

NB

16M
+ κ

]s

|�〉 〈�|3,4 . (16)

In arriving at the preceding two equations, we have used
the fact that the vacuum state is orthogonal to the single-
photon subspace and that (I3 ⊗ I4 − |�〉 〈�|3,4), in addition
to being orthogonal to the vacuum state, is also orthogonal to
|�〉 〈�|3,4. Taking the trace of ρ1−s

0 ρs
1 yields

QQCB =min
0�s�1

(1−κ )s

{
1+ NB

16M

[
−1+

(
1 + 16κM

(1 − κ )NB

)s]}
(17)

=min
0�s�1

{
1−κs+ NB

16M

[
−1 +

(
1+ 16κM

NB

)s]}

+ O(N2
B, κNB). (18)

We now focus on the so-called bad regime, which is charac-
terized by MNB � 1 and κ � NB/M. The second condition
allows us to approximate (1 + 16κM

NB
)s by expanding the term

up to second order in κM/NB to give

QQCB ≈ min
0�s�1

(
1 + s(s − 1)

16κ2M

2NB

)
, (19)

QQCB ≈ 1 − 2κ2M

NB
. (20)

We see from (19) that the minimum occurs at s = 1/2. Sub-
stituting the expression for QQCB in (1) gives an upper bound
on the error probability,

p(N )
e � 1

2

(
1 − 2κ2M

NB

)N

≈ 1

2
e−2Nκ2M/NB . (21)

Comparing with the quantum Chernoff bound for quantum
illumination using entangled photon pairs in the same parame-
ter regime [8], we see a gain of a factor of 16 (i.e., 12-dB gain)
in the probability error exponent for hyperentangled photon
pairs. This result can be generalized to hyperentanglement
in f degrees of freedom where we obtain a factor of 22 f

improvement in the exponent, provided each degree assumes
only two discrete values. This result anticipates the improve-
ment offered by hyperentanglement even in the high-noise
regime, which is demonstrated by the performance analysis
of the proposed receiver structure in the following sections.
For the high-noise and low-signal-intensity regime, we con-
sider the hyperentangled state obtained after (7) and (8) in
the generation procedure, as opposed to the biphoton state
considered in the low-noise regime.

III. HYPERENTANGLEMENT-ENHANCED OPA

The phase-sensitive cross correlations of the hyper-
entangled state are pivotal to the operation of the
hyperentanglement-enhanced OPA (as well as the FF-SFG
receiver). We explicitly calculate these phase-sensitive cross
correlations,

〈a3,H,Sa4,V,I〉

= 〈�|
(

a1,H,S + ia2,H,S√
2

)(
ia1,V,I + a2,V,I√

2

)
|�〉 . (22)

Observing that 〈�| a1,H,Sa2,V,I |�〉 = 〈�| a2,H,Sa1,V,I |�〉 =
0, the above equation can be further simplified,

〈a3,H,Sa4,V,I〉

= i

2
〈�| a1,H,Sa1,V,I |�〉 + i

2
〈�| a2,H,Sa2,V,I |�〉 (23)

= i

4

∞∑
n=1

(N ′
S )n−1/2

(N ′
S + 1)n+1/2

n + i

4

∞∑
n=1

(N ′
S )n−1/2

(N ′
S + 1)n+1/2

n (24)

= i

2

√
(N ′

S )(N ′
S + 1). (25)

We can calculate 〈a3,V,Sa4,H,I〉, 〈a3,H,I a4,V,S〉, and 〈a3,V,I a4,H,S〉
along similar lines with the result that all four phase-
sensitive cross correlations possess an identical value,
i
2

√
(N ′

S )(N ′
S + 1). If we were to use a separable state instead

of the hyperentangled state, then there would be either no
initial correlations between the two spatial modes (for a direct
product state) or the initial classical correlations would be
much lower than entanglement-induced correlations with the
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FIG. 1. Schematic representation of a hyperentanglement-enhanced OPA receiver. The stored spatial mode undergoes splitting by a
polarizing beam splitter (PBS) and each of the two resulting modes are subjected to frequency-dependent splitting using optical grating.
The returning state goes through an identical procedure. The four pairs of correlated modes form the inputs to four OPAs.

result that these correlations would deteriorate even further
due to thermal noise. We exploit these correlations using a
modified implementation of an OPA-based receiver [14], as
demonstrated in the schematic representation in Fig. 1. One
of the spatial modes, say 3, is stored, whereas the other spa-
tial mode is dispatched towards the presumed target. In the
absence of any object in the path, the returning mode aR is
simply the thermal bath mode aB. When the object is present,
the returning mode is of the form

aR = √
κa4 + √

1 − κaB. (26)

In either case, the stored and the returning mode are subjected
to two-level splitting, the first based on the polarization and
the second based on the frequency, using a polarizing beam
splitter and optical grating, respectively (see Fig. 1). As the
thermal state is completely unpolarized, the thermal photons
get divided equally between aR,H and aR,V . Moreover, we may
assume the thermal photons get distributed roughly equally
between the signal and idler frequency modes if the two
frequencies have a comparable magnitude. At the end of this
splitting procedure, each of the four pairs forms the input to a
type-II OPA having gain G = 1 + ε2, marginally greater than
one. Let us consider the first of these parametric amplifiers
with output c,

c =
√

Ga3,H,S + i
√

G − 1a†
4,V,I . (27)

This output is a thermal state with a mean photon number N1

in the presence of the object and N0 in its absence,

N0 = G
N ′

S

2
+ (G − 1)

(NB

4
+ 1

)
, (28)

N1 = G
N ′

S

2
+ (G − 1)

(
NB

4
+ κ

N ′
S

2
+ 1

)

+
√

G(G − 1)κN ′
S (N ′

S + 1). (29)

Such a distribution of photons [14] at an ideal photocounter
will have variance σ 2

m = Nm(Nm + 1), where m assumes the
value of 1 or 0. The output of all four OPAs is identical in
mean photon number and variance. A common photocounter
is used to determine the photon count Npc over all N trans-
mitted temporal modes and the corresponding four amplifier
outputs. The common counter needs to be positioned such
that the output from each of the four amplifiers arrives at the
counter sequentially. Alternately, four identical photocounters
can be used for outputs of the four amplifiers. From classical
detection theory [21], it follows that the threshold is Nth =
4N (σ0N1 + σ1N0)/(σ0 + σ1). When the photon number count
Npc > Nth, we declare the target to be present and vice versa.
The error probability in detection p(N )

e,H -OPA is

p(N )
e,H -OPA = 1

2
erfc(2

√
RN ) � e−4NR

4
√

πNR
, (30)

where R is the signal-to-noise ratio,

R = (N1 − N0)2

2(σ1 + σ0)2
≈ κNS

4NB
. (31)

The final approximation is valid in the limit NS, κ, ε � 1 and
NB � 1. The signal-to-noise ratio for an ideal photocounter
in our setup is half of that of the OPA receiver used for
the TMSV probe. However, we have achieved a fourfold
multiplicity in the number of readings for every iteration of
the transmitter pulse, leading to a net 3-dB gain in the error
exponent over a lone OPA receiver. In Fig. 2, we compare the
performance of this receiver with earlier receiver models.
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FIG. 2. Performance of different receivers. The error probability
of detection for a hyperentanglement-enhanced OPA receiver is close
to the QCB for TMSV and is therefore better than the coherent-state
homodyne detector as well as the lone OPA receiver in the high-
noise regime. The parameters used for the plots are NS = κ = 0.01,
NB = 25, and G = 1.005.

IV. HYPERENTANGLEMENT-ENHANCED
FF-SFG RECEIVER

If we replace each of the four OPA receivers with FF-SFG
receivers, the resulting receiver setup outperforms the lone
FF-SFG receiver. For a lone SFG receiver used in combination
with N iterations of the TMSV probe state, the returning mode
aR and the idler mode aI form the two inputs to give an output
mode b whose frequency is the sum of the frequencies of
the inputs. Due to practical considerations, K feed-forward
cycles are carried out and the mean photon number of the SFG
output at the end of each of the K cycles is determined. For a
sufficiently large K and parameter regime, κ � 1, NS � 1,
and NB � 1, the coherent contribution to the mean photon
number in the absence of any object is nearly zero while in
the presence of an object [16] it assumes the form

K∑
k=1

〈b(k)†
b(k)〉 = N |〈aRaI〉|2/(1 + NB) ≈ κNNS/NB. (32)

Here, b(k) is the output at the end of kth cycle. The quantity in
the preceding equation has been shown to be the exponent in
the error probability bound for the FF-SFG receiver [16]. The
error probability bound thus has the following form,

K∑
k=1

〈b(k)†
b(k)〉 = N |〈aRaI〉|2/(1 + NB) ≈ κNNS/NB. (33)

The hyperentanglement-enhanced FF-SFG receiver model
consists of four identical FF-SFG receivers which differ solely
in their input modes. The input mode pairs for the four
receivers following the hyperentanglement-based splitting
procedure are {a3,H,S, aR,V,I}, {a3,V,S, aR,H,I}, {a3,H,I , aR,V,S},
and {a3,V,I , aR,H,S}. We focus on the first of these receivers
with input modes a3,H,S and aR,V,I . The error probability ex-
ponent for this receiver is calculated by replacing |〈aRaI〉|2 in
(33) with |〈a3,H,S, aR,V,I 〉|2 and NB by NB/4. This is because

the thermal photons are distributed almost equally among
the four modes aR,V,I , aR,H,I , aR,V,S , and aR,H,S following the
splitting procedure,

〈a3,H,SaR,V,I〉 (34)

= 〈a3,H,S (
√

κa4,V,I + √
1 − κaB,V,I )〉 = √

κ〈a3,H,Sa4,V,I〉
(35)

= i

2

√
κ (N ′

S )(N ′
S + 1) = i

2
√

2

√
κ (NS )(NS/2 + 1). (36)

We have used the fact that N ′
S = NS/2. Substituting the above

result in (33) and approximating the resulting expression un-
der the conditions NS � 1 and NB � 1 yields

K∑
k=1

〈b(k)†
b(k)〉 = κNNS (NS/2 + 1)

8(1 + NB/4)
≈ κNNS/2NB. (37)

The error probability is therefore bounded as follows,

p(N )
e,1 � e−κNNS/2NB . (38)

The subscript 1 in the error probability indicates the first of
four FF-SFG receivers. The total error probability is given by

p(N )
e =

4∏
i=1

p(N )
e,i (39)

As the phase-sensitive correlations appearing in the exponent
of the error probability for each receiver are identical, it fol-
lows that

p(N )
e = (

p(N )
e,1

)4 � e−2κNNS/NB . (40)

We see a factor-of-2 (i.e., 3-dB) improvement in the exponent
over the performance of a lone FF-SFG receiver. Thus, the
hyperentanglement-enhanced FF-SFG receiver outperforms
the optimal quantum illumination receiver by 3 dB in the error
probability exponent.

V. CONCLUDING REMARKS

In this article, we have shown the benefits of hyperentan-
glement in the low-noise as well as high-noise regime with
a 12-dB improvement over QI in the low-noise regime and
two variants of a hyperentanglement-enhanced receiver in the
high-noise regime matching the FF-SFG receiver performance
in one instance and surpassing it in the other. The main ad-
vantages of the receiver model proposed in this article stem
from the distribution of thermal noise photons into four modes
following the splitting procedure. Hyperentanglement enables
us to achieve such a distribution without nullifying the phase-
sensitive cross correlations. For the probe state considered, the
performance of the proposed receivers is (possibly) subopti-
mal and only a complete Chernoff bound computation of the
hyperentangled probe states using symplectic decomposition
will shed light on the optimal performance [22]. However, it
should be noted that despite possibly being suboptimal, the
hyperentanglement-enhanced FF-SFG receiver outperforms
the lone FF-SFG receiver, making it the best receiver model to
date. The hyperentanglement-based splitting procedure in our
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model is general enough to allow for other degrees of freedom
such as the time bin to replace the polarization or frequency
in order to circumvent any practical issues associated with
the frequency and polarization of hyperentangled states. In
fact, if we are able to exploit entanglement in a third degree
of freedom we will be able to surpass the performance of
the hyperentanglement-enhanced OPA by 3 dB. In conclu-
sion, the proposed receiver structure is highly versatile and

lends itself to several modifications that need to be further
investigated.
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